A Bibliography of Regression-based Local Modeling Research

Compiled by:

A. Stewart Fotheringham
Wei Luo
Hanchen Yu
Sarah Bardin
Taylor Oshan
Ziqi Li
Mehak Sachdeva

Spatial Analysis Research Center (SPARC)
School of Geographical Sciences and Urban Planning, ASU
Lattie F. Coor Hall, 975 S Myrtle Ave, Tempe, AZ 85281
Contents
Agriculture: .. 3
Archaeology: .. 13
Cartography and Geovisualization: ... 13
Community: .. 16
Crime: ... 17
DEM: .. 23
Demographics: .. 24
Dialect: .. 31
Economics: ... 31
Ecosystem: .. 47
Education: ... 64
Energy: ... 66
Environment: ... 69
Fire: .. 129
Fisheries: ... 133
Flood: .. 134
Forestry: .. 135
Geology: .. 143
Health: ... 147
Land Use: ... 192
Landslide: .. 203
Methodology: ... 205
Politics: .. 234
Real Estate: ... 236
Regional Analysis: ... 256
Software: ... 258
Terrorism: ... 259
Transportation: .. 260
Urban Studies: ... 281
Vegetation: ... 299
Agriculture:

Sassi, M., 2010 . Spatial Approach to Territorial Convergence Across the EU-15 Regions and the Common Agricultural Policy. *Research Topics in Agricultural and Applied Economics*, 1, p.114. https://books.google.co.uk/books?hl=en&lr=&id=0UAxGETEbdYC&oi=find&pg=PA114&ots=melnpkrXU&sig=R_wpaxxTaX7SzL06Vw4BiMf0R3c#v=onepage&q&f=false

Lagona, M.C., Geographical Equity of the EU’s Agricultural Subsidies in Belgium.
http://newmedit.iamb.it/share/img_new_medit_articoli/1089_11yu.pdf

https://opencommons.uconn.edu/dissertations/1237/

https://link.springer.com/article/10.1007/s11769-017-0906-6

https://dl.sciencesocieties.org/publications/cs/abstracts/57/5/2478

https://academicjournals.org/journal/SRE/article-abstract/8FCC67B45689

https://www.ingentaconnect.com/content/tcsae/tcsae/2014/00000030/00000009/art00001

Crowley, C. and Walsh, J., A Local Regression Analysis of Irish Farm Census Data. [link]

Zhang, C.T. and Yang, Y., 2019. Can the spatial prediction of soil organic matter be improved by incorporating multiple regression confidence intervals as soft data into BME method?. *Catena*, 178, pp.322-334. https://doi.org/10.1016/j.catena.2019.03.027

https://doi.org/10.1016/j.aquaculture.2020.734955

https://doi.org/10.3390/en12163102

https://doi.org/10.3390/agriculture10070299

https://doi.org/10.1016/j.scitotenv.2019.02.317

https://doi.org/10.3390/rs12142278

https://doi.org/10.1002/ps.5420

https://doi.org/10.1080/03650340.2019.1626983

https://doi.org/10.1002/agj2.20572

https://doi.org/10.1016/j.jenvman.2021.113190

https://doi.org/10.1016/j.geosus.2021.06.003

https://doi.org/10.3390/land10020206

https://doi.org/10.1007/s11119-021-09841-8

Archaeology:

https://publikationen.unituebingen.de/xmlui/bitstream/handle/10900/61897/26_Lowenburg_CA A2009.pdf?sequence=2

Cartography and Geovisualization:

http://eprints.maynoothuniversity.ie/5820/

https://www.tandfonline.com/doi/abs/10.1179/000870406X114658

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286400/

https://www.tandfonline.com/doi/abs/10.2747/15481603.46.3.273?casa_token=T64M4LurlvQAAAAA:Y44iamBUdWhN_Kz7iFEuMcmlydMtF0SFa6l5vVd0pltP09xIoEXL69IECPqD7dcYwRg0Nvkbjn

https://journals.sagepub.com/doi/abs/10.1057/PALGRAVE.IVS.9500187?casa_token=BPCFRduLJZIAAAAA%3APf9fInSAvzy2MCoGdGrmg-Zm3fYJLPQzEiF0fuFvQuptrHzYFoLOtTd1XhrSmYG-hfKYUnXIFLF

https://www.tandfonline.com/doi/abs/10.1179/000870408X311378

https://doi.org/10.1080/15230406.2019.1687014

https://essd.copernicus.org/articles/12/1913/2020/

Community:

Crime:

Liu, T.C., 2013. Exploring Influence and Spatial Heterogeneity of Urbanization Factors toward Thefts in Taiwan: Global and Local Regression Analysis. Crime & Criminal Justice International, 21. https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler &jrn=18104045&asa=Y&AN=97376999&h=VDAkyV3HOjHrPORkkejLNTiUgZ%2bHXV5EMY9vx%2b%2fnnPVK42%f GyReULTw94%2faI3aBso6hbTvMqixVpmLFeUdtaQ%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dhost%26scope%3dsite%26authtype%3dcrawler%26jrn%3d18104045%26asa%3dY%26AN%3d97376999

https://www.hindawi.com/journals/jad/2013/356152/abs/

https://journals.sagepub.com/doi/abs/10.1177/089443930707298925

https://www.tandfonline.com/doi/abs/10.1080/10511253.2012.715659

https://www.tandfonline.com/doi/abs/10.1080/00045608.2010.534713

https://www.sciencedirect.com/science/article/pii/S0049089X11001190

https://doi.org/10.1111/tgis.12570

https://doi.org/10.1080/07418825.2019.1679862

https://doi.org/10.1177/0886260519900299

https://doi.org/10.1093/socpro/spy013

https://doi.org/10.1016/j.worlddev.2019.06.016

https://doi.org/10.1177/1077559519850340

https://doi.org/10.1080/03736245.2019.1612770

https://arxiv.org/abs/2101.10388

https://doi.org/10.1080/00330124.2020.1838928

DEM:

Demographics:

Muniz, J.O., 2009. Spatial dependence and heterogeneity in ten years of fertility decline in Brazil. *Population Review, 48*(2). https://muse.jhu.edu/article/361732/summary?casa_token=wvZtNIg6krIAAAAA:9wVqva33nLKIR0PxXRDyvHUT1_A-kEvazCMQ5bXX1TJGv41byfMwET8s1HTigiSWdnS7ZmKDkQ

https://www.tandfonline.com/doi/abs/10.1080/09599916.2013.781204

https://www.tandfonline.com/doi/abs/10.2747/1548-1603.41.3.187

https://www.tandfonline.com/doi/abs/10.1080/22797254.2018.1459209

https://www.tandfonline.com/doi/abs/10.1080/10485252.2018.1499907

https://academicjournals.org/journal/AJBM/article-abstract/627426E17671

http://www.airitilibrary.com/Publication/alDetailedMesh?docid=15371514-201103-201107190078-201107190078-236-244

https://link.springer.com/chapter/10.1007/978-94-007-1842-5_22

https://www.ceeol.com/search/article-detail?id=577772

https://ru.ssp.org/sites/default/files/event_call_for_papers/IUSSP2013(KamataIwasawa)G.ver1_.3_mi.pdf

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493119/

https://doi.org/10.3390/su12125018

https://doi.org/10.3390/ijgi8060262

https://doi.org/10.3390/ijgi8010026

https://doi.org/10.1080/14498596.2018.1453881

https://doi.org/10.1186/s13690-020-00456-5

https://doi.org/10.1016/j.habitatint.2019.03.002

https://doi.org/10.1080/15230406.2018.1434834

https://doi.org/10.3390/ijgi8110495

https://doi.org/10.1002/psp.2242

https://doi.org/10.3390/ijgi9070413

https://doi.org/10.3390/su12051772

https://doi.org/10.3390/su12104012

https://doi.org/10.3390/su11102822

https://doi.org/10.1017/S0021934719000087

https://doi.org/10.3390/ijgi9070454

https://doi.org/10.3390/ijgi9060344

https://doi.org/10.1177/0021934720932283

Colbert, J., Sila-Nowicka, K., & Yao, J. (n.d.). Driving forces of population change following the Canterbury Earthquake Sequence, New Zealand: A multiscale geographically weighted regression approach. *Population, Space and Place*, n/a(n/a), e83. https://doi.org/10.1002/psp.2583

Dialect:

Economics:

https://oaktrust.library.tamu.edu/handle/1969.1/151672

http://dergipark.gov.tr/fsecon/issue/31372/334741

https://www.ceeol.com/search/article-detail?id=719703
https://www.ajol.info/index.php/sajg/article/view/162492

https://www.tandfonline.com/doi/abs/10.1080/13658816.2014.958154

https://academic.oup.com/cjres/article-abstract/8/2/359/333092

https://journals.sagepub.com/doi/abs/10.1177/0308518X15622448

33

https://www.cambridge.org/core/journals/journal-of-agricultural-and-applied-economics/article/an-application-of-spatial-poisson-models-to-manufacturing-investment-location-analysis/CC7D5ABEF2DD19A8D2E87435D0BD8E1D

https://mpra.ub.uni-muenchen.de/9581/

https://link.springer.com/article/10.1007/s101090200081

https://www.tandfonline.com/doi/abs/10.1080/00130095.2018.1526074

https://www.mdpi.com/2220-9964/7/1/17

https://www.tandfonline.com/doi/abs/10.1080/00330124.2018.1443480?casa_token=VkAmfsSNU88AAAAA:PktqcakHyzmnQ1OmSjG_7RD-PCIZ3hFYwh84wdE9VIKZ8ntaaT4wWBcYNHNxA8HMDwd6DRaXgJ

https://journals.sagepub.com/doi/abs/10.1177/0308518X18764121?casa_token=BLYGaHv5YjMAAAAA%3AbObhmnmzar7AXS396hpQv56bhL3ZSUkvSgm5P_49hN4MvjtQFy6nQc5qPVCrJOEvBHflol2os85g

https://link.springer.com/article/10.1007/s41685-017-0065-x

https://www.mdpi.com/2220-9964/7/3/83

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190566

http://dergipark.gov.tr/ijefs/issue/26156/275496

Lucas, K., Phillips, I., Mulley, C. and Ma, L., 2018. Is transport poverty socially or environmentally driven? Comparing the travel behaviours of two low-income populations living

https://link.springer.com/article/10.1007/s11069-017-3008-y

https://opencommons.uconn.edu/dissertations/1401/

http://ejournal.puslitkaret.co.id/index.php/proc/article/view/482

http://www.aensiweb.net/AENSIWEB/rjfh/rjfh/2016/March/137-143.pdf

https://akademiai.com/doi/abs/10.1556/032.2017.67.2.1

Breitenecker, R.J., Harms, R., Weyh, A., Maresch, D. and Kraus, S., 2017. When the difference makes a difference—the regional embeddedness of entrepreneurship. Entrepreneurship & regional development, 29(1-2), pp.71-93.
https://www.tandfonline.com/doi/abs/10.1080/08985626.2016.1255432

Chaowu, X.I.E. and Jun, Z.H.A.N.G., 2015. Spatial Characteristics and Influential Factors of Tourism Emergencies in China using Casualty Scales as an Indicator. Tourism Tribune/Lvyou Xuekan, 30(1). https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrn=10025006&AN=100357611&h=LYPmrQ8j%2bJjhz6Kt9SMhVhrqQldOwVaszoF5dDQYgFsqN2ZiKwcmhIOBkrR5xmo%2bfvRacnXP1VCZ%2fnteOrWFQ%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dhost%26scope%3dsite%26authtype%3dcrawler%26jrn%3d10025006%26AN%3d100357611

https://link.springer.com/article/10.1007/s12061-008-9015-3

https://journals.sagepub.com/doi/abs/10.1177/0144129708093810?casa_token=d3ubIKngCROAAAA%3Am0kzWetdFjXBq6OddJQDOCAupnPufXLuNyaRMyZArpRhLOq3STBoGR-QjiH7mJt1VMgG0Zx-y3hE

https://s3.amazonaws.com/academia.edu/documents/39883372/Spatial_Variations_in_the_Role_of_Microe20151110-4772-m0i3sd.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1543707681&Signature=gLkRa%2BV2X6MkDUS5hZJLiQoijWU%3D&response-content-disposition=inline%3B%20filename%3DSpatial_variations_in_the_role_of_microe.pdf

https://rsa.tandfonline.com/doi/abs/10.1080/00343401003713415?casa_token=lZuQgAc2UIsAAA%3A:PUdRWEaAMpIPlXzO8nZkeQpf05pkDnhmz_RXLiBSa6WxaJ6p7sBsKDijXZr5IaALC9Tpyl1so0%3A%20filename%3DSpatial_variations_in_the_role_of_microe.pdf

https://journals.sagepub.com/doi/abs/10.1177/1094428109338871?casa_token=l5o-4CgNwssAAAAA%3AWUXCWMCnPfE4CWU74NrnHZgURuOGGerioBiCSPmVRRxswcVE0Q_cPkJQArfLS3T9JaH57lo3N5Xmm

https://doi.org/10.3390/ijerph17010166

https://doi.org/10.1016/j.jrurstud.2020.04.018

https://doi.org/10.3390/su12010442

https://doi.org/10.1111/jors.12458

https://doi.org/10.1016/j.ijinfomgt.2020.102072

https://doi.org/10.1016/j.ecolecon.2019.05.025

https://doi.org/10.1016/j.cities.2019.01.015
https://doi.org/10.1080/13547860.2018.1503765

https://doi.org/10.1111/apce.12282

https://doi.org/10.1111/pirs.12496

https://doi.org/10.1002/jtr.2344

https://doi.org/10.3390/ijgi9070426

https://doi.org/10.1371/journal.pone.0223296

https://doi.org/10.1080/00167223.2019.1601575

https://doi.org/10.3390/ijgi9080465

Ecosystem:

https://link.springer.com/article/10.1007/s40333-017-0022-6

https://www.mdpi.com/2072-4292/7/10/13782/htm

https://www.ingentaconnect.com/content/tcsae/tcsae/2013/00000029/00000003/art00030

Sadorus, L.L., Mantua, N.J., Essington, T., Hickey, B. and Hare, S., 2014. Distribution patterns of Pacific halibut (Hippoglossus stenolepis) in relation to environmental variables along the

Shun-hua, Y.A.N.G., Hai-tao, Z.H.A.N.G., Long, G. and Yan, R.E.N., 2015. Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging. *Yingyong Shengtai Xuebao, 26*(6). https://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrn=10019332&AN=103434098&h=8timnkf8vgT5eG8acUdHg7dEVs25mR8otSqPTiC7rCW108D7futmzLIvb12HdLa97tLgBfiWrWD%2bFdBVzoU6xw%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crhashurl=login.aspx%3d%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d10019332%26AN%3d103434098

Gagliasso, D., 2012. Evaluating the accuracy of imputed forest biomass estimates at the project level. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/qv33s030v

https://link.springer.com/chapter/10.1007/978-3-642-21037-2_24

http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JHGGBL_2012_v20n3_57

https://doi.org/10.1016/j.apgeog.2013.01.001

Colson, M., 2009. Landscape patterns and patch dynamics in Hamilton county over a forty year period: applicability to the conservation of the eastern box turtle.
https://scholar.utc.edu/theses/232/

https://doi.org/10.1080/13658816.2010.518147

https://www.tandfonline.com/doi/abs/10.1080/2150704X.2012.693218

https://www.tandfonline.com/doi/abs/10.2747/15481603.49.6.915?casa_token=wx1GONpNPIIAAAAA:toKVyGNbDauyMXNEWJ9ZYmYtMrETlgy5VhanKMRHgYbzd95Grlt5bMc2vn93vN6Dm94DV5kHKM

https://www.tandfonline.com/doi/abs/10.1080/14498596.2013.812024

https://www.tandfonline.com/doi/abs/10.1080/13658816.2010.518570

https://doi.org/10.1016/j.ecolind.2019.02.038

https://doi.org/10.18494/SAM.2019.2300

https://doi.org/10.1016/j.ecoleng.2019.05.001

https://doi.org/10.1016/j.ecolind.2020.106681

https://doi.org/10.1016/j.ecolind.2020.106680

https://doi.org/10.1111/ele.13433

https://doi.org/10.1111/geb.12974

https://doi.org/10.1111/nph.16447

https://www.nature.com/articles/s41598-020-65571-3

https://peerj.com/articles/7213/

https://doi.org/10.1080/13504509.2018.1489910

https://peerj.com/articles/9125/?utm_source=TrendMD&utm_campaign=PeerJ_TrendMD_0&utm_medium=TrendMD

Education:

Sage, J.L., *When All Miles Are Not the Same: Spatial Non-Stationarity Impacts of Educational Travel Time Requirements*. http://www.agecon.purdue.edu/sea_2010/Sessions/When%20All%20Miles%20Are%20Not%20the%20Same.pdf

Energy:

Environment:

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206992

https://parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-7-216

Lieske, D.J. and Bender, D.J., 2009. Accounting for the Influence of Geographic Location and Spatial Autocorrelation in Environmental Models: A Comparative Analysis Using North American Songbirds. *Journal of Environmental Informatics, 13*(1). https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=17262135&AN=36979061&h=QTF5ig1Ui3lxfkwXiaEzyE7kvrV9JJ%2493Vr6zberFYF%2bol7a%2F%2bxEvTRMZoffwxyhaqToUS2aHY34sPkoD%2fU8w%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3ddirect%3dtrue%26profile%3ddehost%26scope%3dsite%26authtype%3dcrawler%3djrnl%3d17262135%26AN%3d36979061

http://ejurnal.its.ac.id/index.php/sains_seni/article/view/3204

https://www.mdpi.com/2072-4292/8/3/262/htm

https://journals.sagepub.com/doi/abs/10.1177/0042098015594080

https://www.tandfonline.com/doi/abs/10.1111/j.1467-8306.2005.00459.x

https://www.mdpi.com/2220-9964/6/3/89/htm

https://www.tandfonline.com/doi/abs/10.1080/17583004.2018.1451964

https://www.nature.com/articles/s41598-017-07478-0

https://www.mdpi.com/1660-4601/14/5/508/htm

https://www.hindawi.com/journals/amete/2018/1506017/abs/

Lim-Wavde, K., KAUFFMAN, R.J., Kam, T.S. and Dawson, G.S., 2017. Location matters: Geospatial policy analytics over time for household hazardous waste collection in California. https://ink.library.smu.edu.sg/sis_research/3686/

https://www.e3sconf.org/articles/e3sconf/abs/2013/01/e3sconf_ichm13_35007/e3sconf_ichm13_35007.html

https://pubs.acs.org/doi/abs/10.1021/es5009399

https://www.tandfonline.com/doi/abs/10.1080/01431161.2014.902550

https://digitalcommons.buffalostate.edu/greatlakes_theses/7/

https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrn=16821750&AN=129415003&h=n5bG58vu0WKiCFlyIzjuRz1qxCK8L2iMtSYWzffOEUQjL3Fr2ETtfvXLBPcf%2fs75qOg9PL2u5Ts1emV3P7mmQ%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d16821750%26AN%3d129415003

https://link.springer.com/article/10.1007%2Fs00477-017-1503-z

https://www.mdpi.com/1660-4601/15/4/629

Tu, J. and Tu, W., 2018. How the relationships between preterm birth and ambient air pollution vary over space: A case study in Georgia, USA using geographically weighted logistic regression. *Applied Geography, 92*, pp.31-40.

https://lup.lub.lu.se/student-papers/search/publication/8885965

https://www.mdpi.com/2072-4292/9/12/1278

Couloigner, I., Bertazzon, S., Underwood, F., Johnson, M. and Van Ryswyk, K., Spatial Modelling of Air Pollutants in the City of Calgary and Surrounding Areas.
https://pdfs.semanticscholar.org/1c52/ddbd725aa65d47b189bc20051b77066f5a3b.pdf

https://journals.ametsoc.org/doi/abs/10.1175/WCAS-D-15-0070.1

https://www.mdpi.com/2072-4292/9/6/620/htm

https://link.springer.com/content/pdf/10.1007/s11205-017-1819-6.pdf

https://www.mdpi.com/2220-9964/6/10/308

https://cloudfront.escholarship.org/dist/prd/content/qt8kv3n3bq/qt8kv3n3bq.pdf

https://www.tandfonline.com/doi/abs/10.1080/10106049.2016.1195883

https://www.tandfonline.com/doi/abs/10.1080/02626667.2015.1133911

https://www.mdpi.com/2073-4441/8/6/266/html

https://link.springer.com/article/10.1007/s41324-017-0097-3

https://www.mdpi.com/2072-4292/8/9/760/htm

https://www.soil-journal.net/2/1/2016/soil-2-1-2016.html

https://www.mdpi.com/2072-4292/8/9/716

Gundogdu, I.B., Geographically Weighted Regression and Secondary Variables for Mapping of Meteorological Data.

Vidyalakshmi, R., 2012. *Assessment of Environmental Determinants of Acute Gastro Enteritis using Geographically Weighted Regression Analysis* (Doctoral dissertation, Bharathidasan University). https://pdfs.semanticscholar.org/6d8a/565d43abe89e1ed0c65e185c91880dd36101.pdf

http://adsabs.harvard.edu/abs/2013JApSc..13.2384D

https://link.springer.com/chapter/10.1007/978-94-007-0329-2_20

https://www.researchgate.net/profile/Ionu_Vasiliniuc/publication/236142081_Statistical_spatial_models_of_soil_parameters_Ann_approach_using_different_methods_at_different_scales/links/00b7d5166db2d1df0a000000.pdf

https://www.hindawi.com/journals/mpe/2012/369539/abs/

Suárez-Vega, R., Acosta-González, E., Casimiro-Reina, L. and Hernández, J.M., 2013. Assessing the spatial and environmental characteristics of rural tourism lodging units using a
https://link.springer.com/chapter/10.1007/978-3-7908-2879-5_11

https://www.jstor.org/stable/23268081?seq=1#metadata_info_tab_contents

https://academic.oup.com/forestscience/article/58/1/61/4604537

https://www.mdpi.com/2072-4292/6/9/8639ag

https://www.ingentaconnect.com/content/schweiz/mz/2013/00000022/00000005/art00007

https://pdfs.semanticscholar.org/1b04/e802aacd24061c0a5c7853e8ab81a41fde4.pdf

https://link.springer.com/article/10.1007/s11111-014-0211-6

https://www.tandfonline.com/doi/abs/10.1080/15481603.2014.883210?casa_token=rXrojm0bxM8AAAAA:3fHcLUCBwA6DObMttLcKgB92HmnTFZTret4WLHgHVhHO5PWieGiPqEYWg4kJG-aORsFM9uiG4ke7

https://link.springer.com/article/10.1007/s11442-014-1109-z

https://www.tandfonline.com/doi/abs/10.1080/00045600903550378?casa_token=yFfh2AL5PPkAAAAA:Ray924GaAgrfPgrGpiUi4Sqn5eDcGU4w3IBkn9MOm17QiNYUkXld5VsnOYHiPR5JmxRjc8DMO

https://doi.org/10.1111/tgis.12580

https://doi.org/10.1016/j.envpol.2020.114257

https://doi.org/10.1016/j.jenvman.2020.110646

https://doi.org/10.3390/rs11060636

https://doi.org/10.1016/j.envpol.2019.02.081

https://doi.org/10.1016/j.scitotenv.2020.136509

https://doi.org/10.1016/j.atmosenv.2019.06.052

https://doi.org/10.1016/j.scitotenv.2019.05.352

https://doi.org/10.1016/j.envpol.2020.114065

https://doi.org/10.1016/j.catena.2019.104399

https://doi.org/10.3390/ijerph16245107

https://doi.org/10.1016/j.scs.2020.102106

https://doi.org/10.1016/j.scitotenv.2018.11.223

https://doi.org/10.3390/rs12020222

https://doi.org/10.1016/j.eiar.2020.106384

https://doi.org/10.1016/j.atmosenv.2018.10.031

https://doi.org/10.3390/rs11131553

https://doi.org/10.1016/j.trd.2019.09.004

https://doi.org/10.1016/j.scitotenv.2019.136097

https://doi.org/10.1016/j.scitotenv.2019.01.149

https://doi.org/10.1109/TGRS.2019.2895351

https://doi.org/10.1016/j.jclepro.2019.118659

https://doi.org/10.1016/j.isprsjprs.2019.03.011

https://doi.org/10.3390/su12030865

https://doi.org/10.3390/w11020352

https://doi.org/10.3390/rs11070841

https://doi.org/10.3390/rs11232742

https://doi.org/10.1016/j.isprsjprs.2020.05.018

https://doi.org/10.3390/w12061553

https://doi.org/10.3390/rs11131558

https://doi.org/10.3390/atmos10030110

https://doi.org/10.1371/journal.pone.0218322

https://doi.org/10.1080/15481603.2019.1703288

https://www.nature.com/articles/s41598-020-69590-y

https://doi.org/10.3390/su12041502

Xie, W., Deng, H. and Chong, Z., 2019. The spatial and heterogeneity impacts of population urbanization on fine particulate (PM2.5) in the Yangtze River Economic Belt, China. *International journal of environmental research and public health, 16*(6), p.1058. https://doi.org/10.3390/ijerph16061058

https://doi.org/10.3390/atmos10080461

https://doi.org/10.1080/19475705.2019.1707719

https://doi.org/10.3390/su11071968

https://doi.org/10.1016/j.envpol.2020.114691

https://doi.org/10.3390/ijerph17196956

https://doi.org/10.3390/rs12203368

https://www.nature.com/articles/s41598-020-74561-4

https://doi.org/10.3390/app10217787

https://doi.org/10.1016/j.jenvman.2020.111243

https://doi.org/10.1016/j.scitotenv.2020.141765

https://doi.org/10.1016/j.scitotenv.2020.143266

https://doi.org/10.1016/j.scitotenv.2020.141765

https://doi.org/10.1016/j.atmosres.2020.105135

Qu, M., Chen, J., Huang, B. and Zhao, Y., 2021. Resampling with in situ field portable X-ray fluorescence spectrometry (FPXRF) to reduce the uncertainty in delineating the remediation area of soil heavy metals. *Environmental Pollution, 271*, p.116310.
https://doi.org/10.1016/j.envpol.2020.116310

https://link.springer.com/article/10.1007/s12665-020-09345-0

Qu, M., Chen, J., Huang, B. and Zhao, Y., 2021. Source apportionment of soil heavy metals using robust spatial receptor model with categorical land-use types and RGWR-corrected in-situ FPXRF data. *Environmental Pollution, 270*, p.116220.
https://doi.org/10.1016/j.envpol.2020.116220

https://doi.org/10.1016/j.scitotenv.2020.144057

https://doi.org/10.1080/01431161.2020.1851801

https://doi.org/10.1016/j.scitotenv.2020.144057

https://doi.org/10.1016/j.scitotenv.2020.143266

https://doi.org/10.1016/j.chemosphere.2020.129347

https://essd.copernicus.org/articles/13/529/2021/

https://doi.org/10.1016/j.geoderma.2021.115119

https://doi.org/10.1111/grow.12463

https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29ST.1943-541X.0003122?casa_token=5LLCWd68Tw8AAAAA%3A2Cgp80uW__8DX-a1vO5Hn2wIKgVNYt-VSldhYW1f6AFEXr34H0TUyofUsv7XQcK260bo3EW68Fs&

https://doi.org/10.1155/2021/6680564

https://doi.org/10.1016/j.jenvman.2021.112562

https://doi.org/10.1016/j.scitotenv.2021.146389

https://doi.org/10.5194/essd-13-529-2021
https://doi.org/10.46488/NEPT.2021.v20i01.003

https://doi.org/10.1016/j.scitotenv.2021.148497

https://doi.org/10.3390/ijerph18115634

https://doi.org/10.1007/s10708-019-10070-w

https://doi.org/10.1016/j.ecolind.2021.107547

https://doi.org/10.1016/j.compag.2021.106144

https://doi.org/10.3390/ijgi10050295

https://doi.org/10.1016/j.psep.2022.06.051

Gao, Y., Zhao, J., & Han, L. (2022). Exploring the spatial heterogeneity of urban heat island effect and its relationship to block morphology with the geographically weighted regression model. *Sustainable Cities and Society, 76*, 103431.
https://doi.org/10.1016/j.scs.2021.103431

https://doi.org/10.1016/j.envint.2022.107485

https://doi.org/10.3390/land11071039

https://doi.org/10.3390/atmos13040627

https://doi.org/10.1016/j.envres.2022.112982

https://doi.org/10.3390/atmos13030476
Fire:

https://lup.lub.lu.se/student-papers/search/publication/8892907

https://link.springer.com/article/10.1007/s11676-014-0460-3

http://www.publish.csiro.au/wf/wf15192

https://www.fs.usda.gov/treesearch/pubs/44520

http://www.publish.csiro.au/wf/wf13195

Xue, Z., Gupta, P. and Christopher, S., 2021. Satellite-based estimation of the impacts of summertime wildfires on PM 2.5 concentration in the United States. *Atmospheric Chemistry and Physics, 21*(14), pp.11243-11256. https://doi.org/10.5194/acp-21-11243-2021
Fisheries:

Cullen, D.W. and Guida, V., 2021. Use of geographically weighted regression to investigate spatial non-stationary environmental effects on the distributions of black sea bass (Centropristis striata) and scup (Stenotomus chrysops) in the Mid-Atlantic Bight, USA. Fisheries Research, 234, p.105795. https://doi.org/10.1016/j.fishres.2020.105795

Cullen, D.W. and Guida, V., 2021. Use of geographically weighted regression to investigate spatial non-stationary environmental effects on the distributions of black sea bass (Centropristis striata) and scup (Stenotomus chrysops) in the Mid-Atlantic Bight, USA. Fisheries Research, 234, p.105795. https://doi.org/10.1016/j.fishres.2020.105795
Flood:

Forestry:

Shin, J., 2018. Estimating Forest Inventory Attributes Using Airborne LiDAR in Southwestern Oregon. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/gb19fc12t

https://link.springer.com/article/10.1007/s11676-014-0458-x

https://www.redalyc.org/html/1871/187126298011/

https://link.springer.com/chapter/10.1007/978-3-642-33684-3_6

https://scholar.google.co.uk/scholar?start=460&hl=en&as_sdt=0,3&sciodt=0,3&as_ylo=2003&as_yhi=2010&cites=7805256394129858799,11381246655346717021&scipsc=

Santos, F., Graw, V. and Bonilla, S., 2019. A geographically weighted random forest approach for evaluate forest change drivers in the Northern Ecuadorian Amazon. *Plos one, 14*(12), p.e0226224. https://doi.org/10.1371/journal.pone.0226224

https://doi.org/10.3390/rs13142792

Geology:

https://getd.libs.uga.edu/pdfs/cahalan_matthew_d_201512_ms.pdf

https://www.tandfonline.com/doi/abs/10.1080/13658810600852263?casa_token=7ZRYflkYoZkAAAAA:sgC-Rhz4Mgg3dWcu2qNxmC1bDOjT8Bs1qz-3izAciQZejGb9rPwzTStonqSqpREhIKQOMXirYmw

https://link.springer.com/article/10.1007/s11442-017-1386-4

https://search.proquest.com/openview/35133b4a35b4ede33ba865b296ee42e2/1?pq-origsite=gscholar&cbl=105726

https://www.tandfonline.com/doi/abs/10.1080/15481603.2014.929258?casa_token=0sE7Hw1qw dUAAAAA;t2rCotCapRAyNV3OdCQmYFt4t9EzRLK9yv1xLw6hw9iAruT6JGXBuqUnP78L6ci pfl01_ccmyWT4v2g

https://books.google.co.uk/books?hl=en&lr=&id=omODAwAAQBAJ&oi=fnd&pg=PA109&ots=jz6t-67gf0&sig=Cienb8EtHAN0epy00oUlfUSmfPl#v=onepage&q&f=false

http://etheses.whiterose.ac.uk/5452/

https://link.springer.com/article/10.1007/s13146-012-0098-1

Health:

https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-017-5017-x

http://article.sapub.org/10.5923.j.ajgis.20150403.03.html

https://www.tandfonline.com/doi/abs/10.1080/23754931.2015.1012423

https://jdmlm.ub.ac.id/index.php/jdmlm/article/view/90

https://www.nature.com/articles/srep19247

https://www.mdpi.com/2220-9964/7/9/351

https://link.springer.com/article/10.1007/s11356-018-2614-x

https://injuryprevention.bmj.com/content/21/4/260.short

https://digital.library.txstate.edu/handle/10877/4685

https://prism.ucalgary.ca/handle/11023/1528

https://www.tandfonline.com/doi/abs/10.1080/07359683.2014.874854

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235967/

https://www.mdpi.com/1660-4601/15/8/1619

https://www.mdpi.com/2220-9964/7/11/433

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207068

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868983/

Ge, Liang, Youlin Zhao, Zhongjie Sheng, Ning Wang, Kui Zhou, Xiangming Mu, Liqiang Guo, Teng Wang, Zhanqiu Yang, and Xixiang Huo. "Construction of a Seasonal Difference-Geographically and Temporally Weighted Regression (SD-GTWR) Model and Comparative Analysis with GWR-Based Models for Hemorrhagic Fever with Renal Syndrome (HFRS) in
https://www.mdpi.com/1660-4601/13/11/1062/htm

https://www.mdpi.com/1660-4601/14/12/1518

https://www.mdpi.com/1660-4601/13/5/473/htm

http://iopscience.iop.org/article/10.1088/1755-1315/37/1/012032/meta

https://ejournal.undip.ac.id/index.php/media_statistika/article/view/13130

https://academic.oup.com/swr/article-abstract/40/2/117/2426968

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146085

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172383

https://www.mdpi.com/1660-4601/13/11/1125

Smith, L.T., 2014. Extreme hydrological events and their impacts on children’s respiratory health in the Legal Amazon. https://ore.exeter.ac.uk/repository/handle/10871/15250

Yu, D., Morton, C.M. and Peterson, N.A., 2014. Community pharmacies and addictive products: sociodemographic predictors of accessibility from a mixed GWR perspective. *GIScience & remote sensing*, 51(1), pp.99-113. https://www.tandfonline.com/doi/abs/10.1080/15481603.2014.886457?casa_token=ji8jP3IGk60AAAAA:dYSs8E1-FL2qE0wwPg-8P-9i_rQ-nWTyMoI3apTaQ1V7afP1fnnx96NgjjgL8ICNB4owhiaF25FZwH0g

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690431/

https://link.springer.com/article/10.1007/s00038-014-0581-7

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610181/

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131578

https://link.springer.com/chapter/10.1007/978-94-007-6735-5_19

https://www.tandfonline.com/doi/abs/10.1080/15230406.2014.965748

Tsai, P.J. and Yeh, H.C., Scrub typhus islands in the Taiwan Area and the association between scrub typhus disease and forest land use and farm worker density: Geographically weighted regression.
https://pdfs.semanticscholar.org/f89a/6f9f3837e88de6acc5c4d1196b6633f00ae9.pdf

https://spiral.imperial.ac.uk/handle/10044/1/6862

https://etda.libraries.psu.edu/catalog/12361

https://link.springer.com/chapter/10.1007/978-3-642-28894-4_30

https://link.springer.com/chapter/10.1007/978-94-007-0329-2_18

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776805/

Tsai, P.J., 2011. The analysis of geographically weighted regression pertaining to gastric cancer and Taiwanese ethnic communities. In *International conference on Environmental, Biomedical and Biotechnology*.
https://pdfs.semanticscholar.org/ec30/4f6f75373a5482a01d0de0478dbf08514ef8.pdf

https://www.econstor.eu/handle/10419/124131

https://pdfs.semanticscholar.org/6bed/ecda57493af6ec277a232f513bac8c053aa.pdf

https://link.springer.com/article/10.1007/BF03354885

https://www.journals.sagepub.com/doi/abs/10.1177/156482651303400410

https://www.tandfonline.com/doi/abs/10.1080/19475680903271133

Saib, M.S., Caudeville, J., Carre, F., Ganry, O., Trugeot, A. and Cicoella, A., 2014. Spatial relationship quantification between environmental, socioeconomic and health data at different

https://www.mdpi.com/1660-4601/12/2/1425

https://journals.sagepub.com/doi/abs/10.1177/108876909336728

https://www.sciencedirect.com/science/article/pii/S0049089X10001754

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038978

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135656

https://www.mdpi.com/1660-4601/10/12/7207/htm

https://www.mdpi.com/1660-4601/10/11/5844/htm

https://doi.org/10.1186/s12942-020-00204-6

https://doi.org/10.3390/ijerph16245013

https://doi.org/10.1111/tmi.13289

https://doi.org/10.3390/ijerph16030454

Namgung, M., Gonzalez, B. and Park, S., 2019. The Role of Built Environment on Health of Older Adults in Korea: Obesity and Gender Differences. *International journal of environmental research and public health, 16*(18), p.3486. https://doi.org/10.3390/ijerph16183486

https://doi.org/10.1080/16549716.2020.1785737

https://doi.org/10.1016/j.scs.2020.102627

https://doi.org/10.1016/j.scitotenv.2020.143869

https://doi.org/10.3390/ijerph18031043

https://doi.org/10.1016/j.scitotenv.2020.143343

https://doi.org/10.1016/j.scitotenv.2020.144036

https://doi.org/10.1111/pirs.12576

https://doi.org/10.1016/j.scs.2021.102752

https://doi.org/10.3390/ijerph17176274

https://doi.org/10.3390/ijerph17207664

https://doi.org/10.1016/j.scs.2021.102784

https://doi.org/10.1029/2021GH000395

https://doi.org/10.1371/journal.pone.0247795

https://doi.org/10.1371/journal.pone.0253603

https://doi.org/10.1111/pirs.12576

https://doi.org/10.1111/cdoe.12603

https://doi.org/10.1590/1413-81232021263.42372020

https://doi.org/10.1029/2021GH000402

https://doi.org/10.1029/2020GH000358

https://doi.org/10.1016/j.scs.2021.103034

Li, Z., Qiao, S., Jiang, Y. and Li, X., 2021. Building a social media-based HIV risk behavior index to inform the prediction of HIV new diagnosis: a feasibility study.
https://doi.org/10.1097/QAD.0000000000002787

https://doi.org/10.1080/09640568.2021.1879033

https://doi.org/10.1016/j.envpol.2020.116327

https://doi.org/10.1016/j.pce.2021.103043

https://doi.org/10.4081/gh.2021.985

https://doi.org/10.1371/journal.pone.0253253

https://doi.org/10.1016/j.healthplace.2021.102571

https://doi.org/10.1111/jebm.12430

https://doi.org/10.14710/medstat.14.1.10-20

Land Use:

Zhang, W., He, Q., Wang, H., Cao, K. and He, S., 2018. Factor analysis for aerosol optical depth and its prediction from the perspective of land-use change. *Ecological Indicators*, 93, pp.458-469.

https://www.tandfonline.com/doi/abs/10.18666/jlr-2016-v48-i2-6539

http://or.nsfc.gov.cn/bitstream/00001903-5/307897/1/1000014036870.pdf

http://iopscience.iop.org/article/10.1088/1755-1315/18/1/012170/meta

https://ascelibrary.org/doi/abs/10.1061/(ASCE)UP.1943-5444.0000274?casa_token=5dOGMrYTKzQAAAAA:ABAG5L6ZofOD7w3xfTdPYXM_0rvDmfP3aSxALIDScOPwiCd7UqR9ahpuhN55LoP2SSJG37KAang

https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnI=18325505&AN=94967608&h=krnojpO8Ze9NhdcJlpKV6wWrQo7f1OaOJrantigk0l2e6zSDt8DIycCtER1Addme%2fKZu8VWxiKuBBq1ibg%3d%3d&crl=c&resultNs=AdminWebA
https://www.tandfonline.com/doi/abs/10.1080/01431161.2014.975377

Tang, Q., 2012. GIS-based urban land use characterization and population modeling with subpixel information measured from remote sensing data.
https://digitalcommons.lsu.edu/gradschool_dissertations/1282/

https://search.proquest.com/openview/424511a4334599febe5acf5cee8e4ddf/1?pq-origsite=gscholar&cbl=1766360

https://journals.sagepub.com/doi/abs/10.3141/2397-13?casa_token=amVpCQmzeL4AAAAAA3AwMKDkhP2-r2WPC0OC1RnJewf-yAviQQuvYR02k5-38ql-sUMjWwIf8O7Raqm_BKOxRMNO_7Aj1

https://www.researchgate.net/profile/Noresah_Shariffic/publication/235931337_International_Environmental_Modelling_and_Software_Society_iEMSs_2010_International_Congress_on_Environmental_Modelling_and_Software_Modelling_for_Environment's_Sake_Fifth_Biennial_Meeting_Modelling_U/links/0fcfd51469e0b69841000000.pdf

https://www.tandfonline.com/doi/abs/10.2747/1548-1603.44.2.166?casa_token=jUmNyM5oTvEAAAAA:V6ydvgnwzTr4U_vB1Bc4eAh2vA7u4Oy-K5wW16aTr2aS_4xcFfF51L3m0Dh-teDz_YvwaDHZdX

https://www.tandfonline.com/doi/abs/10.1080/2150704X.2012.736694

https://journals.sagepub.com/doi/pdf/10.3141/2245-14?casa_token=AmwR5nQi04kAAAAA%3AlvtaBSaymTFbaKdV1waInv9gkqw6-BOjLpn65DkiXV3qiwFkLwMVCw6FR4hHYgRssG2d6ALN8Eu

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081188

https://www.tandfonline.com/doi/abs/10.1080/15481603.2015.1072400?casa_token=x7C5ABuBBbCAAAAA:ZB6glx7Frc2ek76fuUF1uleshFMOgDoaYmopUPam1WIWRF227T7f8WvgvOY9WMYNhCtAcFtG--

https://doi.org/10.3846/jelms.2020.12081

https://doi.org/10.1080/13658816.2019.1591416

https://doi.org/10.1080/01490400.2019.1600441

https://doi.org/10.1016/j.landusepol.2019.104408

https://doi.org/10.3390/su11102786

https://doi.org/10.1111/gcb.14611

https://doi.org/10.3390/su12114737

https://doi.org/10.3390/rs12091422

https://doi.org/10.1016/j.landusepol.2019.104269

https://doi.org/10.1016/j.landusepol.2021.105443

https://doi.org/10.1016/j.apgeog.2020.102383

https://doi.org/10.1016/j.jclepro.2021.128321

https://doi.org/10.3390/rs13071305

https://doi.org/10.1016/j.uclim.2021.100832

https://doi.org/10.3390/rs13040610

https://doi.org/10.1016/j.jtrangeo.2021.103071

https://doi.org/10.1016/j.ecolind.2021.107967

Landslide:

Hong, H., Pradhan, B., Sameen, M.I., Chen, W. and Xu, C., 2017. Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector

https://www.tandfonline.com/doi/abs/10.1080/19475705.2017.1403974

https://link.springer.com/article/10.1007/s10346-009-0188-x

https://www.mdpi.com/1660-4601/13/5/487/htm

http://www.ejge.com/2013/Ppr2013.251alr.pdf

https://journals.sagepub.com/doi/abs/10.1177/030913314528944?casa_token=eAJyCrPi4iAAA AAA%3Ayn8CvvtNg6hE6Hve3qEZkg68ZsXbZ8Kkg_sRFFpy9pxM71MrMmBIgdzhicDea29dHk590QaFb91-

https://doi.org/10.3390/app10031107

https://doi.org/10.1016/j.jappgeo.2020.103987
https://doi.org/10.1371/journal.pone.0229818

https://doi.org/10.1016/j.ijdrr.2021.102283

https://doi.org/10.1016/j.scs.2021.103005

Methodology:

https://books.google.co.uk/books?hl=en&lr=&id=cULJd4Mp6AIC&oi=fnd&pg=PA227&ots=uvqzBvaSmH&sig=5w3EqcJAhhvJgvQGVliGA649JWI#v=onepage&q&f=false

https://www.tandfonline.com/doi/abs/10.1080/13658816.2018.1521523

https://www.tandfonline.com/doi/abs/10.1080/13658816.2013.865739

https://link.springer.com/chapter/10.1007/978-0-387-76815-1_6

Leung, Y., Mei, C.L. and Zhang, W.X., 2000. Testing for spatial autocorrelation among the residuals of the geographically weighted regression. *Environment and Planning A*, 32(5), pp.871-890. https://journals.sagepub.com/doi/abs/10.1068/a32117?casa_token=dNLQ0Q82s0AAAAAA%3AHQq-1TIwoRkMCFyQnj7vr2dDzdQP-1TOnv83Mx10gTIq2rB3xgo5DGem5m-P1leoYo_oFuNL68hg

208

https://www.tandfonline.com/doi/abs/10.1080/13504850802314452

https://www.tandfonline.com/doi/abs/10.1080/19475683.2010.540258

http://www.nrcresearchpress.com/doi/abs/10.1139/x05-295#.XAMJP-hKi00

http://eprints.maynoothuniversity.ie/5768/

Mei, C.L., 2005. Geographically weighted regression technique for spatial data analysis. *School of Science Xi'an Jiaotong University*.
http://159.226.47.19/academic/workshop/workshop7/paper5.pdf

https://www.tandfonline.com/doi/abs/10.1080/00330124.2013.768130?casa_token=sRX9wFFws eoAAAAA:wSJ9gDMVT2MImo39ykZQmhpKd7lUHTHL51MJM-gZsuM8zOiDG4FoZoA1drdxzwEy52XVVZVWZreY

https://link.springer.com/article/10.1007/s10109-014-0199-6

https://research-repository.st-andrews.ac.uk/handle/10023/7052

Yu, D., 2009, August. Spatial interpolation via GWR, a plausible alternative?. In *Geoinformatics, 2009 17th International Conference on* (pp. 1-5). IEEE.

https://pdfs.semanticscholar.org/3881/91d891ed9a83a01781eac7b0f91aa0b747c0.pdf

Yilmazkuday, H. and Yazgan, M.E., 2009. Okun's Convergence within the US.

https://www.jstage.jst.go.jp/article/jappstat/38/3/38_3_111/_article/-char/ja/

https://ourarchive.otago.ac.nz/handle/10523/707

https://s3.amazonaws.com/academia.edu.documents/3245011/2gisruk2013_submission_2.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1544333473&Signature=iEg11A6duNeVpr%2Fm0d7CWyhhEMc%3D&response-content-disposition=inline%3B%20filename%3DTesting_geographically_weighted_multicol.pdf

Dong, G. and Harris, R., Modelling Spatial Heterogeneity: a Local Approach or a Global Approach?.

https://link.springer.com/article/10.1007/s10708-014-9551-0

https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-23430-9_92

https://www.ceeol.com/search/article-detail?id=133675

http://article.sapub.org/10.5923.j.statistics.20150501.01.html

https://www.tandfonline.com/doi/abs/10.1080/15230406.2013.831205?casa_token=HvU8i7Deo9gAAAAA:bNsDtrMfNPPnwCyM5k9WF0ijQmTOZDDwdRKsHMAvyh0HH-FViXyHEdwRCDKfkU5XdGubgXyMvbwNMQ

https://pdfs.semanticscholar.org/b322/2638a7d6db7ee254b3a5050e749a6266e1dd.pdf

https://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1263731?casa_token=Sw4ikKGNKfoAAAAAA:242SclzdUK0cXlzEL758yg2SN8G5V1mgPbiEZXBf0MR5fsdjIO5qenyDNMjI MwU5bONrx8KcK0s

https://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1149181?casa_token=brwLitdra_UAAAAA:DL1gezRhufSvEyvuVsg-BXmxz3BOud-L6pSCHvpiNo0gl2FrFqa05w5IR9bMcBZ83sY3_C5UTB

https://www.tandfonline.com/doi/abs/10.1080/24694452.2016.1191990?casa_token=OuixEmjh5rAAAAAA:JquMDp1MZJtd4uKFhk_NxjdOtUZwWfQOBkDevhg5_gzcQqfDUN00QtigP6lqOH 29jLRMCg1BjoLh

https://cloudfront.escholarship.org/dist/prd/content/qt04t0t6ds/qt04t0t6ds.pdf

Sodikin, I., Pramoedyo, H. and Astutik, S., GEOGRAPHICALLY WEIGHTED REGRESSION AND BAYESIAN GEOGRAPHICALLY WEIGHTED REGRESSION MODELLING WITH ADAPTIVE GAUSSIAN KERNEL WEIGHT FUNCTION ON THE POVERTY LEVEL IN WEST JAVA PROVINCE.

[Link](https://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1224886?casa_token=CEU4CItZGx8AAAAA:pFaMkHaZzGR7khkf5KMT8zDePSKJIPPYIkdauU3lSysl9Ya9MY8qdXPvbUu1VBu7KZxhYtgoQ9r)

Leong, Y.Y. and Yue, J.C., of the paper: A Modification to Geographically Weighted Regression.

[Link](http://iopscience.iop.org/article/10.1088/1742-6596/893/1/012025/meta)

[Link](http://eprints.whiterose.ac.uk/131530/)

[Link](https://ieeexplore.ieee.org/abstract/document/8519793)

[Link](https://www.sciencedirect.com/science/article/pii/S0303243418306627)

https://s3.amazonaws.com/academia.edu/documents/31967556/05569386.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1546823675&Signature=0JkavbzRtOL2oQ8otqhmSuZjotI%3D&response-content-disposition=inline%3B%20filename%3DCorrelation_analysis_between_crown_width.pdf

http://krishikosh.egranth.ac.in/handle/1/93090

https://books.google.co.uk/books?id=7dPLBQAAQBAJ&oi=fnd&pg=PA321&ots=qCfrN9d-tq&sig=xc9CXB7VPhhK-3MUx4MGvsBQP24#v=onepage&q&f=false

http://eprints.maynoothuniversity.ie/5755/

https://www.tandfonline.com/doi/abs/10.1080/13658816.2010.528420

http://www.geog.leeds.ac.uk/groups/geocomp/2017/papers/19.pdf

https://www.mdpi.com/1099-4300/19/2/53/htm

https://www.tandfonline.com/doi/abs/10.1080/00036846.2017.1279266

http://www.dbpia.co.kr/Journal/ArticleDetail/NODE07245298

https://www.tandfonline.com/doi/abs/10.1080/13658816.2012.698014

https://www.tandfonline.com/doi/abs/10.1080/13658816.2019.1572895

https://doi.org/10.1016/j.neucom.2020.02.058

https://doi.org/10.1080/24694452.2020.1774350
https://doi.org/10.1155/2019/4352396

https://doi.org/10.1080/13658816.2020.1720692

https://doi.org/10.1080/13658816.2019.1707834

https://doi.org/10.1109/TGRS.2019.2930764

https://doi.org/10.1080/24694452.2019.1704680

https://doi.org/10.3390/rs12162547

https://doi.org/10.1080/13658816.2020.1775836

https://doi.org/10.1111/geb.12841

https://doi.org/10.3390/rs12030398

https://doi.org/10.1111/gean.12223

https://doi.org/10.1080/13658816.2018.1547386

https://doi.org/10.1080/15481603.2020.1760434

https://doi.org/10.1029/2019EA001037

https://doi.org/10.1080/01431161.2019.1693076

https://doi.org/10.1002/sam.11440

https://doi.org/10.1111/tgis.12557

https://doi.org/10.1080/10618600.2020.1754225

https://doi.org/10.1080/13658816.2019.1648813

https://doi.org/10.1111/tgis.12639

Politics:

http://eprints.maynoothuniversity.ie/5875/

https://link.springer.com/chapter/10.1007%2F978-3-642-13312-1_45

https://www.tandfonline.com/doi/abs/10.1080/10361146.2013.786674?casa_token=NGP7FUFGelAAAAA:XJXFDamt8XjoXXSmrUbs-A82xHrr1i-5BAnyW0XQIc08ZgPodZ37GY1wCVaxsGLejrP1Mkbvzk8d

https://link.springer.com/chapter/10.1007/978-3-642-03326-1_13

https://link.springer.com/article/10.1007Fs10708-012-9451-0

Vezzoni, C. and Mancosu, M., The Geography of Electoral Cycle in Northern Italy.
https://ecpr.eu/filestore/paperproposal/33a0982a-3784-4b4a-a262-e92df51313db.pdf

Real Estate:

https://www.mdpi.com/2071-1050/10/12/4503

http://go.galegroup.com/ps/anonymous?id=GALE%7CA268405496&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=13571419&p=AONE&sw=w

Chan, W.M., 2014. COMPARISON OF SPATIAL HEDONIC HOUSE PRICE MODELS: APPLICATION TO REAL ESTATE TRANSACTIONS IN VANCOUVER WEST.
http://summit.sfu.ca/item/14416

Bhattacharjee, A., Castro, E., Maiti, T. and Marques, J., Online supplementary material for “Endogenous spatial regression and delineation of submarkets: A new framework with application to housing markets”.

http://ejournals.lib.auth.gr/reland/article/view/6485

https://journals.sagepub.com/doi/abs/10.1177/0361198118773889

https://journals.sagepub.com/doi/abs/10.1177/0042098011429486

https://link.springer.com/article/10.1007/s12076-012-0084-1

https://www.jstor.org/stable/40987332?casa_token=kATqL7c1Ow8AAAAA:3OoTYRw_gvcpG_SNMFh_vHi6ZBlqbP4yrGhrSydXKRefMrQ-1yHTmf1c23l5S0KKEIC9VaF3c-HdwbJohw6-osFJnMV2OaimSrV8Sva6mhec_3phs20&seq=1#metadata_info_tab_contents

https://search.proquest.com/openview/688d25fa665556108487d3bdebad3df8/1?pq-origsite=gscholar&cbl=2032646

https://www.mdpi.com/2071-1050/9/9/1635

https://ascelibrary.org/doi/abs/10.1061/(ASCE)UP.1943-5444.0000386?casa_token=mda3Fadrg7cAAAAA:yK1AvYcTcPTNY2KQkQLU0sXHVe3BAmZVtqFIs3pdgwRCMIOHXd4n_pulkycnOg-TzhT-2MBbHA

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10444/104440F/Implementing-GIS-in-real-estate-price-prediction-and-mass-valuation/10.1117/12.2280255.full?casa_token=QYl3DP7WOjsAAAAA%3atoHQetM3_loLtg7wAU_gGZOBwbuh2kA0nwjF5dz_J OUchXpRSzQbshPDrK5G8xmP6iiyjEWw

https://www.tandfonline.com/doi/abs/10.3846/1648715X.2016.1247021

https://www.mdpi.com/2220-9964/5/1/4/htm

KC, K., Chhetri, P., Arrowsmith, C. and Corcoran, J., 2014. Modelling the spatial pattern of housing-renovation employment in Melbourne, Australia: an application of geographically weighted regression. *Applied GIS, 10*(4). [https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=18325505&AN=100053305&h=A1xVtQYQuB9N7cfdz4Tc8Hz9BSVBu5TrDVqCQi6RXbUBSSRdu3wDP83rBmuQ%2bUDXVVkD%2bMhzTcKJy1hm7edA%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crllashurl=login.aspx%3fdirect%3dtrue%26profile%3ddehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d18325505%26AN%3d100053305]

http://www.aresjournals.org/doi/abs/10.5555/rees.32.3.d4713v80614728x1

https://www.jstor.org/stable/2621653#metadata_info_tab_contents

https://journals.sagepub.com/doi/abs/10.1068/b32119

https://journals.sagepub.com/doi/abs/10.1177/0042098013492234?casa_token=2gnet15ECyYAAAAA%3Ahaw7cM3DNfbUyopcj7kYA2p_9xawCWJp6sTfYhS7kJasMR4qswx-iRgn5y_brs2pDdeqioKQvt4

https://www.tandfonline.com/doi/abs/10.2747/1548-1603.44.3.267?casa_token=5tZZfsv7p6YAAAAA:7lmcqjeF98VvscLRcMyCskQ_rTVtL6dXbD8Kh9M5WLvv5tueO6amo_GfdID8de46cTcRdbHu_4sQ

http://le.uwpress.org/content/85/1/51.short?casa_token=JkQ8J9yF0sYAAAAA:V9tMn8XRRqhoakAPkLSwdlWmrn7e4ljH60Z93f0j1x8MILtwR_PZg7ZvXczNjkqDYDiVoIw

https://link.springer.com/chapter/10.1007%2F978-3-642-39649-6_22

https://doi.org/10.3390/s19143167

https://doi.org/10.3390/ijgi9060346

https://doi.org/10.3390/land10010024

https://doi.org/10.1016/j.landusepol.2021.105292

https://doi.org/10.1080/10511482.2021.1882533

https://doi.org/10.1108/IJHMA-05-2020-0050

https://doi.org/10.1016/j.cities.2021.103304

https://doi.org/10.1016/j.landusepol.2022.106183

https://doi.org/10.1177/23998083211063885

Regional Analysis:

https://www.tandfonline.com/doi/abs/10.1080/00330124.2017.1416302?casa_token=gk-3p6VqHvUAAAAA:mHw2tb9XUkiBjqqv3QOK5WvTNCBjAyv7vIPGLnCoWbJnvQgbTiPkSAfip1QeWgM__OHNiENJUCJn

Artelaris, P., Regional convergence and divergence in the enlarged european union: a comparison of different spatial econometric approaches.

https://www.tandfonline.com/doi/abs/10.1080/17421770701251905

Software:

https://sgsup.asu.edu/sites/default/files/SparcFiles/mgwr_1.0_manual_final.pdf

https://arxiv.org/abs/1306.0413

http://eprints.maynoothuniversity.ie/6131/

https://www.tandfonline.com/doi/abs/10.1080/10095020.2014.917453

Terrorism:

https://www.tandfonline.com/doi/abs/10.1080/10242694.2012.695034

https://journals.sagepub.com/doi/abs/10.1177/0022343310364576?casa_token=g5uNFFAgIL8AAAA%3A_WwaasPV8cSOe2pGGBrY7dj8BU74Gg1_7spsv8yk6mzMBtMC_GoI7u2NkgaaGh2JPSiDhNxVhYUh
Transportation:

https://link.springer.com/chapter/10.1007/978-3-319-70019-9_18

https://link.springer.com/article/10.1007/s11116-018-9928-x

https://journals.sagepub.com/doi/abs/10.1177/0954409713496987

https://trid.trb.org/view/1118238

https://www.mdpi.com/2413-8851/2/1/14

https://www.tandfonline.com/doi/abs/10.1080/15568318.2017.1422301

https://www.mdpi.com/2071-1050/10/12/4684

Cartlidge, J., Gong, S., Bai, R., Yue, Y., Li, Q. and Qiu, G., 2018, March. Spatio-temporal prediction of shopping behaviours using taxi trajectory data. In *Big Data Analysis (ICBDA), 2018 IEEE 3rd International Conference on* (pp. 112-116). IEEE.

https://journals.sagepub.com/doi/abs/10.1177/0361198118788430?casa_token=qk9eGS4Mv7kJAAA:Obc_JBydguR2ALklI9R6vkKz4VEhtarHNNrQumXjO1Y5g4avVlcN4BaTd4oE2TNmE CQFyg2LK2N-f

https://link.springer.com/chapter/10.1007/978-3-319-75862-6_6

https://www.mdpi.com/2076-3263/6/1/16

https://www.tandfonline.com/doi/abs/10.1080/00036846.2017.1302064

Gong, S., Cartlidge, J., Yue, Y., Qiu, G., Li, Q. and Xin, J., 2017, November. Geographical huff model calibration using taxi trajectory data. In *Proceedings of the 10th ACM SIGSPATIAL Workshop on Computational Transportation Science* (pp. 30-35). ACM.
https://dl.acm.org/citation.cfm?id=3151553

file:///C:/Users/wluo23/Downloads/fulltext_stamped.pdf

https://www.tandfonline.com/doi/abs/10.1080/01615440.2013.803414

https://www.sciencedirect.com/science/article/pii/S0967070X16302402

http://lctr.eng.fiu.edu/reports.htm

https://ascelibrary.org/doi/abs/10.1061/(ASCE)TE.1943-5436.0000680?casa_token=b8EmqRwojMAAAAA%3AKf9vRJ3LvhHYmWpHkFsJ7Hv0WL6hIgHHLMy0WzQ2fS7EMCDkVL_TE_IqqBcu6ZiRriX1Iqa8Oqg&

https://link.springer.com/article/10.1007/s12061-014-9117-z

https://journals.sagepub.com/doi/pdf/10.1177/0361198106197700123

https://journals.sagepub.com/doi/pdf/10.3141/1879-12

https://journals.sagepub.com/doi/abs/10.1068/a36116?casa_token=ob6gPUnyNSwAAAAA%3Abh9wgpj8y4-r3Kc3FhTDryAKi4BPW2efbF15AQL3KxoPsGlNpnDzyA1Bu9qNh4HGqATfJXlppWda

https://journals.sagepub.com/doi/pdf/10.1177/0361198106197200113?casa_token=5TrYP4OgwIQAQAAA%3AnaBZuNDfVSBG5zyt3aJeO0lPG0uHJh2f4mv6vHVPo0N_X4lT5aVQ_WACgvLLjAVoCJlv_rG7qc

https://journals.sagepub.com/doi/abs/10.1068/a38336?casa_token=x4olOdt_5AYAAAAA%3AhZvTLlxrWEndExkA1bpZ7rcbewMBlb8yGzpTjm294itjvyn1zhP8JQDKbeikP37PFzpUb55RTdk

https://journals.sagepub.com/doi/abs/10.3141/2276-18?casa_token=udUaBVWBEFYAAAA%3AjxbgTt2MQWkk-MIJkmMkFvpNNQ8XEhouztCqpMwjkkiNjg_vIECb0g201ZJ6boGSvqlAdTVUF1gc

https://doi.org/10.1016/j.cities.2018.12.033

https://doi.org/10.1139/cjce-2018-0727

https://doi.org/10.1016/j.trf.2020.02.003

https://doi.org/10.1016/j.jtrangeo.2019.102617

https://doi.org/10.1016/j.tranpol.2020.03.006

https://doi.org/10.3390/app9204217

https://doi.org/10.1016/j.apgeog.2019.102130

https://doi.org/10.1177/0361198119844976

https://doi.org/10.1177/0361198119837221

https://doi.org/10.1177/0361198119850790

https://www.nature.com/articles/s41370-019-0141-6

https://doi.org/10.1111/pirs.12523

https://doi.org/10.1080/01944363.2019.1692690

https://doi.org/10.1177/0361198120931100

https://doi.org/10.1080/01441647.2020.1747570

https://doi.org/10.1080/12265934.2020.1816206

https://doi.org/10.3390/su11102733

Urban Studies:

https://link.springer.com/chapter/10.1007/978-3-319-92099-3_54

https://content.sciendo.com/view/journals/udi/57/1/article-p15.xml

https://ageconsearch.umn.edu/bitstream/6233/2/470056.pdf

https://link.springer.com/chapter/10.1007/978-3-319-57819-4_26

https://ascelibrary.org/doi/abs/10.1061/(ASCE)CO.1943-7862.0000654

https://link.springer.com/chapter/10.1007/978-1-4020-9642-6_4

https://www.tandfonline.com/doi/abs/10.2747/1548-1603.45.4.426?casa_token=VJP3IIgIfnwAAAAA:4K2GH1eBibSTj4unewmUMr9FD9j7ePxfp-TjXQ-d3YaoztquKDkh3qvpGB_5TnkA7xERKj6ySS

https://link.springer.com/content/pdf/10.1007/3-540-26676-3_12.pdf

https://www.tandfonline.com/doi/abs/10.1080/15230406.2018.1434834?casa_token=SfjVzGBVor4AAAAAA:VAUfHAbiE8cqPrUOz6DsSjlaKg45VfGolBClj_0O4nAZ0P8fEVQ5Coxf46YMRHsTB_EgEmXhJ

https://link.springer.com/article/10.1007/s12076-018-00221-x

https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29UP.1943-5444.0000450

https://scholarworks.wmich.edu/masters_theses/3409/

Zhang, T., Chen, S.S. and Li, G., 2018. Exploring the relationships between urban form metrics and the vegetation biomass loss under urban expansion in China. *Environment and Planning B: Urban Analytics and City Science*, p.2399808318816993. https://journals.sagepub.com/doi/abs/10.1177/2399808318816993?casa_token=b5gDQSs2VaMAAAAAA:v66MtYUQ9sxJ1aa541QcV5nCRqwuGzvYCGejrXAX2bwORyJAmp7k9WtyLS_oYa_yBWDh-CI9hF

https://academic.oup.com/jue/article/2/1/juw006/2875730

https://link.springer.com/chapter/10.1007/978-3-319-19342-7_7

https://www.mdpi.com/2071-1050/7/10/13399/htm

https://content.sciendo.com/view/journals/cer/17/4/article-p137.xml

https://link.springer.com/article/10.1007/s12061-014-9101-7

https://www.researchgate.net/profile/Ilyoung_Hong2/publication/277881605_Spatial_Analysis_of_Location-Based_Social_Networks_in_Seoul_Korea/links/567bb16808aebccc4dfdd5b7.pdf

https://www.scientific.net/AMM.423-426.1398

http://www.koreascience.or.kr/article/JAKO201121761944323.page

http://eprints.lse.ac.uk/58536/

https://www.researchgate.net/profile/Richard_Shaker/publication/278784180_Investigating_Land_Cover_and_Urban_Pattern_Impacts_on_Watershed_Integrity_A_GWR_and ANN_Approach/links/558596b808aeb0cdaddf6488.pdf

https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:akron1290663731

http://agile.dsi.uminho.pt/pen/PosterAbstracts_PDF%5C136_DOC.pdf

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693392/

https://scholarsarchive.byu.edu/iemssconference/2010/all/285/

https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/210474

https://pdfs.semanticscholar.org/f131/e24da4184a48313bd591ca7f2e276a7a2997.pdf

http://le.uwpress.org/content/84/2/241.short

Vegetation:

