A Bibliography of Regression-based Local Modeling Research

Compiled by:

A. Stewart Fotheringham
Wei Luo
Hanchen Yu
Sarah Bardin
Taylor Oshan
Ziqi Li
Mehak Sachdeva

Spatial Analysis Research Center (SPARC)
School of Geographical Sciences and Urban Planning, ASU
Lattie F. Coor Hall, 975 S Myrtle Ave, Tempe, AZ 85281
Contents
Agriculture: ... 3
Archaeology: .. 13
Cartography and Geovisualization: ... 13
Community: .. 16
Crime: ... 17
DEM:... 23
Demographics: .. 24
Dialect: .. 31
Economics: ... 31
Ecosystem: .. 47
Education: ... 64
Energy: .. 65
Environment: .. 69
Fire: ... 128
Fisheries: ... 132
Flood: .. 133
Forestry: .. 135
Geology: .. 143
Health: ... 147
Land Use: .. 190
Landslide: .. 201
Methodology: ... 203
Politics: ... 232
Real Estate: ... 234
Regional Analysis: ... 254
Software: ... 256
Terrorism: ... 257
Transportation: ... 257
Urban Studies: ... 278
Vegetation: .. 296
Agriculture:

https://www.tandfonline.com/doi/abs/10.1080/13658816.2014.959522

https://link.springer.com/chapter/10.1007/978-3-662-07136-6_13

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191273

https://www.mdpi.com/2072-4292/10/4/491

Lagona, M.C., Geographical Equity of the EU’s Agricultural Subsidies in Belgium.

http://newmedit.iamb.it/share/img_new_medit_articoli/1089_11yu.pdf

https://link.springer.com/article/10.1007/s11769-017-0906-6

https://dl.sciencesocieties.org/publications/cs/abstracts/57/5/2478

https://academicjournals.org/journal/SRE/article-abstract/8FCC67B45689

https://www.ingentaconnect.com/content/tcsae/tcsae/2014/00000030/00000009/art00001

https://pdfs.semanticscholar.org/b385/65bc3cc91e5becff9718d23faa419fde4553.pdf

https://www.jstor.org/stable/pdf/44131327.pdf?casa_token=0P3qbw-Bkq8AAAAAA:qz78hLv1VZ-mFF-QvQFBHmncbwMf9esHe-2GixTBXa5ScaK_ScMOUn-Utq_7AFaiuYDzu3qzwXYy7brxrIG95eqQMx-rYee-7kGkRAbbCeRedAMayCk

Crowley, C. and Walsh, J., A Local Regression Analysis of Irish Farm Census Data.

https://ageconsearch.umn.edu/bitstream/174483/2/33_4_3.pdf

https://core.ac.uk/download/pdf/6553590.pdf

https://ageconsearch.umn.edu/bitstream/234625/2/Montresor%20et%20al%202005%20An%20Exploratory%20Spatial%20Data%20Analysis%20for%20Detecting%20the%20Indicators%20for%20Assessing%20the%20Decoupling%20Schemes.pdf

https://www.tandfonline.com/doi/abs/10.1080/03650340802478807

https://doi.org/10.1016/j.agrformet.2019.05.022

https://doi.org/10.1109/TGRS.2019.2941696

https://doi.org/10.3390/rs11020111

https://doi.org/10.3390/rs11091032

https://doi.org/10.1016/j.jhydrol.2020.125156

https://doi.org/10.3390/su11123423

https://doi.org/10.2134/agronj2019.03.0165

https://doi.org/10.3390/su12176904

https://doi.org/10.1002/agi2.20179

https://doi.org/10.1111/sum.12590

https://doi.org/10.1016/j.scitotenv.2020.139565

https://doi.org/10.3390/rs12193247

https://doi.org/10.3390/agronomy10111720

https://doi.org/10.1016/j.scitotenv.2020.141977

https://doi.org/10.1002/agj2.20572

https://doi.org/10.1016/j.jenvman.2021.113190

https://doi.org/10.1016/j.geosus.2021.06.003

https://doi.org/10.3390/land10020206

https://doi.org/10.1007/s11119-021-09841-8

Archaeology:

https://publikationen.unituebingen.de/xmlui/bitstream/handle/10900/61897/26_Lowenberg_CAA2009.pdf?sequence=2

Cartography and Geovisualization:

http://eprints.maynoothuniversity.ie/5820/
https://www.utpjournals.press/doi/abs/10.3138/carto.48.3.1564

http://eprints.undip.ac.id/58237/

http://www.agocg.ac.uk/sosci/casestudies/brunsdon/brunsdon.pdf

Foley, P. and Demšar, U., Towards Using Geovisual Analytics to Interpret the Output of Geographically Weighted Discriminant Analysis.

http://eprints.maynoothuniversity.ie/5863/

https://www.tandfonline.com/doi/abs/10.1080/13658816.2012.722638

https://research-repository.st-andrews.ac.uk/handle/10023/15680

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.7756&rep=rep1&type=pdf

https://www.tandfonline.com/doi/abs/10.1179/000870406X114658

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286400/

https://www.tandfonline.com/doi/abs/10.2747/15481603.46.3.273?casa_token=T64M4LurlvQAAAAA:Y44iamBUdfWhN_Kz7iFEuMcmlydMtF0SFA6l5vVd0pltP09xIoEXL69IECPqD7dcYwRg0Nvkbjn

https://journals.sagepub.com/doi/abs/10.1057/PALGRAVE.IVS.9500187?casa_token=BPCFRduLIZIAAAAA%3APf9fInSAvzy2MCOgDGrmg-Zm3fYJLPQGE1F0fuvhQuptrHzYFoLOtTd1XhhrSmYG-hfKYUnXIFLF

https://www.tandfonline.com/doi/abs/10.1179/000870408X311378

https://doi.org/10.1080/15230406.2019.1687014

https://essd.copernicus.org/articles/12/1913/2020/

Community:

Crime:

https://link.springer.com/chapter/10.1007/978-94-017-8757-4_8

https://www.tandfonline.com/doi/abs/10.1080/02732173.2014.857184

https://shsu-ir.tdl.org/handle/20.500.11875/2359

http://drops.dagstuhl.de/opus/volltexte/2018/9384/

Liu, T.C., 2013. Exploring Influence and Spatial Heterogeneity of Urbanization Factors toward Thefts in Taiwan: Global and Local Regression Analysis. Crime & Criminal Justice International, 21. https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler &jrn=18104045&asa=Y&AN=97376999&h=VDAkyV3H0jHrPORkkejLNTiUgZ%2bHXV5EMY9vx%2b%2fnmPVK42%fGvReULTw94%2faJ3aBso6hbTvMqjxVpmLFeUdtaQ%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3ddehost%26scope%3dsite%26authtype%3dcrawler%26jrn%3d1810405%26asa%3dY%26AN%3d97376999

Song, W. and Liu, D., 2013. Exploring spatial patterns of property crime risks in Changchun, China. *International Journal of Applied Geospatial Research (IJAGR), 4*(3), pp.80-100. https://www.igi-global.com/article/content/77926

https://doi.org/10.1080/17538947.2021.1886356

https://doi.org/10.1177/0886260519839429

https://doi.org/10.1080/07418825.2019.1679862

DEM:

https://doi.org/10.1016/j.scitotenv.2021.147140

http://www.spatial-accuracy.org/system/files/img-X03141139_0.pdf

Demographics:

https://www.tandfonline.com/doi/abs/10.2747/1548-1603.41.3.187

https://academicjournals.org/journal/AJBM/article-abstract/627426E17671

http://www.airitilibrary.com/Publication/alDetailedMesh?docid=15371514-201103-201107190078-201107190078-236-244

https://link.springer.com/chapter/10.1007/978-94-007-1842-5_22

https://www.ceeol.com/search/article-detail?id=577772

https://iussp.org/sites/default/files/event_call_for_papers/IUSSP2013(Kamatalwasawa)G.ver1_3_mi.pdf

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493119/

Colbert, J., Sila-Nowicka, K., & Yao, J. (n.d.). Driving forces of population change following the Canterbury Earthquake Sequence, New Zealand: A multiscale geographically weighted regression approach. Population, Space and Place, n/a(n/a), e83. https://doi.org/10.1002/psp.2583

Dialect:

Economics:

https://www.ajol.info/index.php/sajg/article/view/162492

https://www.tandfonline.com/doi/abs/10.1080/13658816.2014.958154

https://academic.oup.com/cjres/article-abstract/8/2/359/333092

https://journals.sagepub.com/doi/abs/10.1177/0308518X15622448

https://www.cambridge.org/core/journals/journal-of-agricultural-and-applied-economics/article/an-application-of-spatial-poisson-models-to-manufacturing-investment-location-analysis/CC7D5ABEF2DD19A8D2E87435D0BD8E1D

https://mpra.ub.uni-muenchen.de/9581/

https://link.springer.com/article/10.1007/s101090200081

Lucas, K., Phillips, I., Mulley, C. and Ma, L., 2018. Is transport poverty socially or environmentally driven? Comparing the travel behaviours of two low-income populations living

https://link.springer.com/article/10.1007/s11069-017-3008-y

https://opencommons.uconn.edu/dissertations/1401/

http://ejournal.puslitkaret.co.id/index.php/proc/article/view/482

http://www.aensiweb.net/AENSIWEB/rjfh/rjfh/2016/March/137-143.pdf

https://akademiai.com/doi/abs/10.1556/032.2017.67.2.1

Breitenecker, R.J., Harms, R., Weyh, A., Maresch, D. and Kraus, S., 2017. When the difference makes a difference—the regional embeddedness of entrepreneurship. Entrepreneurship & regional development, 29(1-2), pp.71-93.
https://www.tandfonline.com/doi/abs/10.1080/08985626.2016.1255432

Chaowu, X.I.E. and Jun, Z.H.A.N.G., 2015. Spatial Characteristics and Influential Factors of Tourism Emergencies in China using Casualty Scales as an Indicator. *Tourism Tribune/Lvyou Xuekan, 30*(1). https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrn=10025006&AN=1003576111&h=LYPmrQR8j%2bJjhz6Kt9SMhVhrqQldOwVaszof5dDQYgFsqN2ZJ13KwvmlhIOBkR5xmo%2bfvRacnXP1VCZ%2fnteOrWFQ%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crllhashurl=login.aspx%3fredirect%3dtrue%26profile%3dhost%26scope%3dsite%26authtype%3dcrawler%26jrn%3d10025006%26AN%3d100357611

https://s3.amazonaws.com/academia.edu.documents/36787584/SUB151577.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1544731124&Signature=gzAcNETcyQvz3O86TrRTrRGzY60%3D&response-content-disposition=inline%3B%20filename%3DPoverty_Data_Modeling_In_North_Sumatera.pdf

https://link.springer.com/article/10.1007/BF03354903

https://jms.fmipa.itb.ac.id/ojs_3.0.2/index.php/jms/article/view/338

https://journal.ugm.ac.id/jieb/article/view/6229

https://digitalcommons.lsu.edu/gradschool_dissertations/1626/

Nelson, P.B., 2008. Life-course influences on nonearnings income migration in the United States. Environment and Planning A, 40(9), pp.2149-2168. https://journals.sagepub.com/doi/abs/10.1068/a39243?casa_token=H8FTtil-QD0AAAAA%3Aw0RlNuw8g7p10ICF_yDN4MoNfDB5CV5khozx2vx70wXfXbL7XiYBzcDxeZkRVVqMPa10eESMitDj

Cheng, S. and Li, H., 2011. Spatially varying relationships of new firm formation in the United States. Regional Studies, 45(6), pp.773-789. https://rsa.tandfonline.com/doi/abs/10.1080/00343301003713415?casa_token=lZuQgAc2U1sAAAAA:PUDrWEaAMpjPlXzO8nZkeQpf05pkDnhmz_RXLlBSa6WxaL6p7sBskDjXZr5iTaALC9TpyIrIs0#.XAMj8ehKi00

Breitenecker, R.J. and Harms, R., 2010. Dealing with spatial heterogeneity in entrepreneurship research. Organizational Research Methods, 13(1), pp.176-191. https://journals.sagepub.com/doi/abs/10.1177/1094428109338871?casa_token=L5o-4CgNwssAAAA%3AWUXuLMWCnPF4CWU74NnrHZuURuOGGerii0BiCSPmVRRxswcVE0Q_cPkQArlLS3T9JaH57Io3N5Xmm

https://link.springer.com/chapter/10.1007/978-3-642-03326-1_12

https://doi.org/10.1080/13683500.2019.1638352

https://doi.org/10.3390/ijgi9060345

https://doi.org/10.3390/ijgi8050202

https://doi.org/10.1016/j.tra.2019.10.016

https://doi.org/10.1111/jors.12480

https://doi.org/10.3390/su12145836

https://doi.org/10.1111/tgis.12630

https://doi.org/10.1080/1540496X.2020.1799782

https://doi.org/10.1080/14616688.2019.1612464

https://doi.org/10.15244/pjoes/121046

https://doi.org/10.3390/su12208382

https://doi.org/10.3390/su13010100

https://doi.org/10.1016/j.techsoc.2020.101516

https://doi.org/10.1080/00167428.2021.1941015

Ecosystem:

https://jpoll.ut.ac.ir/article_64329.html

https://digitalcommons.lsu.edu/gradschool_dissertations/4306/

http://biozoojournals.ro/nwjz/content/v13n2/nwjz_e161608_Stefanescu.pdf

https://pubs.rsc.org/en/content/articlelanding/2016/em/c6em00407e/unauth#!divAbstract

http://orca.cf.ac.uk/74714/

https://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrn=10019332&AN=103434098&h=8timnkf8vgT5eG8acUdHg7dEVs25mR8otSqPTiC7rCWJ08D7futmzL1vbl2HdLa97tLgBfWrWD%2bFdBVZoU6xw%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%3dprofile%3dhost%26scope%3dsite%3dauthtype%3dcrawler%26jrn%3d10019332%26AN%3d103434098

https://www.mdpi.com/2220-9964/4/2/783

Gagliasso, D., 2012. Evaluating the accuracy of imputed forest biomass estimates at the project level. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/qv33s030v

http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JHGGBL_2012_v20n3_57

https://doi.org/10.1016/j.apgeog.2013.01.001

Colson, M., 2009. Landscape patterns and patch dynamics in Hamilton county over a forty year period: applicability to the conservation of the eastern box turtle.
https://scholar.utc.edu/theses/232/

Wang, K., Zhang, C. and Li, W., 2012. Comparison of geographically weighted regression and regression kriging for estimating the spatial distribution of soil organic matter. *GIScience & Remote Sensing, 49*(6), pp.915-932. https://www.tandfonline.com/doi/abs/10.2747/15481603.49.6.915?casa_token=wx1GONpNP1IAAAAA:toKVyGnbDaayMXNEWJ9ZYmYtMrETlgy5VhanKMRHgYbzqd95GrIt5bMc2vn93vjN6Dm94DV5kHKM

https://doi.org/10.1016/j.ecoser.2021.101245

https://doi.org/10.1111/jeb.13737

https://doi.org/10.1002/ldr.3815

https://doi.org/10.24850/j-tyca-2021-02-02

https://doi.org/10.1016/j.rse.2021.112514

https://doi.org/10.1016/j.scitotenv.2021.147389

https://doi.org/10.1016/j.jclepro.2021.128392
Education:

Rangel, C., 2013. *Choosing success? Inequalities and opportunities in access to school choice in nine United States districts* (Doctoral dissertation, University of Illinois at Urbana-Champaign). https://www.ideals.illinois.edu/handle/2142/42318

Sage, J.L., *When All Miles Are Not the Same: Spatial Non-Stationarity Impacts of Educational Travel Time Requirements*. http://www.agecon.purdue.edu/sea_2010/Sessions/When%20All%20Miles%20Are%20Not%20the%20Same.pdf

Energy:

https://doi.org/10.3390/atmos12050593

Environment:

https://scholarworks.boisestate.edu/anthro_gradproj/1/

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184057

https://www.tandfonline.com/doi/abs/10.1080/00291950802517890

Yu, W., Liu, Y., Ma, Z. and Bi, J., 2017. Improving satellite-based PM 2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting. *Scientific reports, 7*(1), p.7048. https://www.nature.com/articles/s41598-017-07478-0

https://www.hindawi.com/journals/amete/2018/1506017/abs/

Ran, Y., Li, X. and Cheng, G., 2018. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. *Cryosphere*, 12(2).

Lim-Wavde, K., KAUFFMAN, R.J., Kam, T.S. and Dawson, G.S., 2017. Location matters: Geospatial policy analytics over time for household hazardous waste collection in California. https://ink.library.smu.edu.sg/sis_research/3686/

https://pubs.acs.org/doi/abs/10.1021/es5009399

https://www.tandfonline.com/doi/abs/10.1080/01431161.2014.902550

https://link.springer.com/article/10.1007/s11629-012-2447-x

https://www.tandfonline.com/doi/abs/10.1080/00330120701715143

Tu, J. and Tu, W., 2018. How the relationships between preterm birth and ambient air pollution vary over space: A case study in Georgia, USA using geographically weighted logistic regression. Applied Geography, 92, pp.31-40.

https://lup.lub.lu.se/student-papers/search/publication/8885965

Couloigner, I., Bertazzon, S., Underwood, F., Johnson, M. and Van Ryswyk, K., Spatial Modelling of Air Pollutants in the City of Calgary and Surrounding Areas. https://pdfs.semanticscholar.org/1c52/ddbd725aa65d47b189bc20051b77066f5a3b.pdf

Zhao, Q., Wentz, E., Fotheringham, S., Yabiku, S., Hall, S., Glick, J., Dai, J., Clark, M. and Heavenrich, H., 2016, January. Semi-Parametric Geographically Weighted Regression (S-

https://www.mdpi.com/2072-4292/8/9/716

https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnln=10019332&AN=102953526&h=TXLCNVbwKUabuMzifPBPaqiWx2dd1QnwxeEj0kvP0oTLzXd20GB7shfb7JA8yQeYutFOmUHSku1epyumuMSgA%3d%3d&crl=c&resultNs=AdmindWebAuth&resultLocal=ErrCrlNotAuth&crllhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnln%3d10019332%26AN%3d102953526

https://www.scientific.net/AMM.641-642.19

Gundogdu, I.B., Geographically Weighted Regression and Secondary Variables for Mapping of Meteorological Data.

https://www.researchgate.net/profile/Gustavo_Santos17/publication/283504924_A_SPATIAL_ANALYSIS_OF_NON_ACUSTICAL_FACTORSRELATED_TO_AIRCRAFT_NOISE/links/563bbdec08aee6f17dd4eaa7.pdf
&jrnl=10170839&AN=110927062&h=serFfT0o5jmxRbr2fZOTaIRgY9GfT4Blczhz%2fQgF5
xdwdOiDS41sJ6ynBKgcO8jXSigyv2K93U0goGbMh8I%22bg%3d%3d&crl=c&resultNs=Admin
WebAuth&resultLocal=ErrCrlNotAuth&crllhashurl=login.aspx%3fdirected%3dtrue%26profile%3d
ehost%26scope%3dsite%26authtype%3dcrawler%26jrnln%3d10170839%26AN%3d110927062

http://etd.auburn.edu/handle/10415/4659

https://www.mdpi.com/2073-4441/7/8/4026

https://ieeexplore.ieee.org/document/6930718

https://link.springer.com/article/10.1007/s12517-014-1370-6

https://www.researchgate.net/profile/Nader_Saadatkhah/publication/261993408_Spatial_Patterns
_of_Precipitation_Altitude_and_Monsoon_Directions_in_Hulu_Kelang_Area_Malaysia/links/54
11286f0cf2df04e75d71de.pdf

https://www.researchgate.net/profile/Ionu_Vasiliniuc/publication/236142081_Statistical_spatial_models_of_soil_parameters_An_approach_using_different_methods_at_different_scales/links/00b7d5166db2d1df0a000000.pdf

https://www.hindawi.com/journals/mpe/2012/369539/abs/

https://link.springer.com/chapter/10.1007/978-3-7908-2879-5_11

https://link.springer.com/article/10.1007/s10596-012-9290-6

https://www.tandfonline.com/doi/abs/10.1080/00045600903362279

https://doi.org/10.1016/j.iswcr.2019.01.005

https://doi.org/10.3390/rs12030453

https://doi.org/10.1111/tgis.12580

https://doi.org/10.1016/j.envpol.2020.114257

https://doi.org/10.1016/j.jenvman.2020.110646

https://doi.org/10.3390/rs11060636

https://doi.org/10.1016/j.envpol.2019.02.081
https://doi.org/10.1016/j.scitotenv.2020.136509

https://doi.org/10.1016/j.atmosenv.2019.06.052

https://doi.org/10.1016/j.scitotenv.2019.05.352

https://doi.org/10.1016/j.jclepro.2020.121309

https://doi.org/10.1016/j.envpol.2020.114065

https://doi.org/10.1016/j.catena.2019.104399

https://doi.org/10.3390/ijerph16245107

https://doi.org/10.1016/j.scs.2020.102106

https://doi.org/10.3390/rs11182091

https://doi.org/10.3390/rs11161939

https://doi.org/10.1080/10807039.2019.1641790

https://doi.org/10.3390/rs11131558

https://doi.org/10.3390/atmos10030110

https://doi.org/10.1371/journal.pone.0218322

https://doi.org/10.1080/15481603.2019.1703288

Xie, W., Deng, H. and Chong, Z., 2019. The spatial and heterogeneity impacts of population urbanization on fine particulate (PM2.5) in the Yangtze River Economic Belt, China. *International journal of environmental research and public health, 16*(6), p.1058. https://doi.org/10.3390/ijerph16061058

https://doi.org/10.3390/rs11111319

https://doi.org/10.1080/13658816.2019.1664742

https://www.nature.com/articles/s41598-020-64043-y

https://doi.org/10.1504/IJSNET.2019.098285

https://www.hindawi.com/journals/amete/2019/7232481/

https://doi.org/10.1080/09593330.2018.1551941

https://doi.org/10.3390/su12145500

https://doi.org/10.1080/01904167.2020.1711944

https://doi.org/10.1029/2019EA000657

https://doi.org/10.1111/ecog.03591

https://doi.org/10.3390/atmos10080461

https://doi.org/10.1080/19475705.2019.1707719
https://doi.org/10.3390/su11071968

https://doi.org/10.1016/j.envpol.2020.114691

https://doi.org/10.3390/ijerph17196956

https://doi.org/10.3390/rs12203368

https://www.nature.com/articles/s41598-020-74561-4

https://doi.org/10.3390/app10217787

https://doi.org/10.3390/land10010020

https://www.nature.com/articles/s41598-020-79229-7

https://link.springer.com/article/10.1007/s11356-020-11051-0

https://doi.org/10.3390/ijgi10010031

https://doi.org/10.3390/ijerph18020608

https://www.cambridge.org/core/journals/quaternary-research/article/impact-of-methodological-decisions-on-climate-reconstructions-using-wapls/38FB41181F6B3F725ACB14FDA2DCC22A

https://doi.org/10.1016/j.scitotenv.2020.144057

https://doi.org/10.1029/2020GH000323

https://doi.org/10.1111-grow.12463

10.13287/j.1001-9332.202104.002

https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29ST.1943-541X.0003122?casa_token=5LLCWd68Tw8AAAAA%3A2Cgp80uW_8DX-a1vO5Hn2wIKgVNYt-VSldhYW1f6AFEXr34H0TUyofUsv7XQcK260bo3EW68Fs&

https://doi.org/10.1016/j.jenvman.2021.112562

https://doi.org/10.1016/j.scitotenv.2021.146389

https://doi.org/10.5194/essd-13-529-2021

https://doi.org/10.46488/NEPT.2021.v20i01.003

https://doi.org/10.1016/j.scitotenv.2021.148497

https://doi.org/10.3390/ijerph18115634

https://doi.org/10.1007/s10708-019-10070-w

Fire:

https://www.tandfonline.com/doi/abs/10.2747/1548-1603.47.2.221

https://link.springer.com/article/10.1007/s11769-010-0437-x

https://scholar.ufs.ac.za/handle/11660/9191

https://lup.lub.lu.se/student-papers/search/publication/8892907

https://link.springer.com/article/10.1007/s11676-014-0460-3

http://www.publish.csiro.au/wf/wf15192

https://link.springer.com/article/10.1007/s10980-010-9548-0

https://doi.org/10.1016/j.scitotenv.2020.137313

https://doi.org/10.3390/rs12091499

https://doi.org/10.1080/10106049.2017.1415986

https://doi.org/10.1080/10106049.2020.1723718

Xue, Z., Gupta, P. and Christopher, S., 2021. Satellite-based estimation of the impacts of summertime wildfires on PM 2.5 concentration in the United States. *Atmospheric Chemistry and Physics*, 21(14), pp.11243-11256. https://doi.org/10.5194/acp-21-11243-2021

Fisheries:

Flood:

Forestry:

https://www.mdpi.com/1999-4907/9/10/582

http://www.sisef.it/iforest/abstract/?id=ifor2574-011

https://link.springer.com/chapter/10.1007/978-3-319-29589-3_3

https://www.mdpi.com/2071-1050/9/5/804/htm

https://link.springer.com/chapter/10.1007/978-3-319-35074-5_4

https://dialnet.unirioja.es/servlet/articulo?codigo=6240136

137

http://www.scielo.br/scielo.php?pid=S0044-59672016000200151&script=sci_arttext

https://ir.library.oregonstate.edu/concern/defaults/tt44pn323

https://link.springer.com/article/10.1007/s11676-014-0458-x

https://www.redalyc.org/html/1871/187126298011/

https://link.springer.com/chapter/10.1007/978-3-642-33684-3_6

https://scholar.google.co.uk/scholar?start=460&hl=en&as_sdt=0,3&sciodt=0,3&as_ylo=2003&as_yhi=2010&cites=7805256394129858799,11381246655346717021&scipsc=

https://academic.oup.com/forestscience/article/58/1/75/4604202

https://www.fs.usda.gov/treesearch/pubs/45818

https://doi.org/10.1371/journal.pone.0226224

https://doi.org/10.1080/01426397.2019.1624700

https://doi.org/10.3390/rs12071115

https://doi.org/10.1371/journal.pone.0226830

https://doi.org/10.3390/f11040454

https://doi.org/10.1080/02827581.2020.1852309

https://doi.org/10.1016/j.geodrs.2021.e00399

https://doi.org/10.3390/plants10071377

https://www.nature.com/articles/s42003-021-01985-7

https://doi.org/10.3390/f12050534

https://doi.org/10.1016/j.jenvman.2021.113020

https://doi.org/10.3390/rs13142792

https://doi.org/10.3390/land10070752
Geology:

KARAMAN, M., ABDELNASSER, A., BUDAKOGLU, M., GEREDELI, S. and KUMRAL, M., Spatial REE geochemical modeling at Lake Acigöl, Denizli, Turkey: Spatial interpolation and spatial correlation analytical approach.

Health:

https://malariajournal.biomedcentral.com/articles/10.1186/s12936-017-2116-1

https://link.springer.com/article/10.1007/s10552-017-0897-8

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152940/

https://www.tandfonline.com/doi/abs/10.1080/13658816.2011.585612

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098170

http://ejournal.uin-malang.ac.id/index.php/Math/article/view/5879

https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-017-5017-x

http://article.sapub.org/10.5923.j.ajgis.20150403.03.html

https://www.tandfonline.com/doi/abs/10.1080/23754931.2015.1012423

https://jdmmlm.ub.ac.id/index.php/jdmmlm/article/view/90

https://www.nature.com/articles/srep19247

https://www.mdpi.com/1660-4601/14/11/1428

https://journals.sagepub.com/doi/abs/10.3141/2352-17
https://www.tandfonline.com/doi/abs/10.1080/10225706.2014.962551

https://ir.library.louisville.edu/etd/3021/

https://deepblue.lib.umich.edu/handle/2027.42/137046

https://dl.acm.org/citation.cfm?id=3017617

https://www.mdpi.com/2220-9964/7/9/351

https://injuryprevention.bmj.com/content/21/4/260.short

https://digital.library.txstate.edu/handle/10877/4685

https://prism.ucalgary.ca/handle/11023/1528

https://www.tandfonline.com/doi/abs/10.1080/07359683.2014.874854

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235967/

https://run.unl.pt/handle/10362/48102

https://www.mdpi.com/1660-4601/15/10/2300

http://journal.ui.ac.id/index.php/health/article/viewArticle/5561

https://www.mdpi.com/1660-4601/14/11/1326

https://www.mdpi.com/1660-4601/14/6/569

http://www.journal.uad.ac.id/index.php/KesMas/article/view/2125

http://article.sapub.org/10.5923.j.statistics.20140403.02.html

https://run.unl.pt/handle/10362/36941

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690243/

https://ore.exeter.ac.uk/repository/handle/10871/15250

https://www.jstage.jst.go.jp/article/jea/25/10/25_JE20140218/_article/-char/ja/

https://www.tandfonline.com/doi/abs/10.1080/15230406.2014.985716?casa_token=hS840zDe2dMAAAAA:rCC3zODPV48w0fT9nRA5ecGKuXjzr8TLxRzBKykKLeMPZ7HqijDb7cfzn4GZVzk-jqu-Z6LOyhViY5mw

https://www.tandfonline.com/doi/abs/10.1080/15481603.2014.886457?casa_token=ji8jP3IGk60AAAAA:dYSs8EI-FL2qE0wwPg-8P-9i_rQ-nWTyMol3apTaQ1V7afP1fnx96NgjgL8lCNB4owhiaF25FZwH0g

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1006.6187

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690431/

https://link.springer.com/article/10.1007/s00038-014-0581-7

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610181/

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131578

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117128/

https://link.springer.com/chapter/10.1007/978-94-007-6735-5_19

https://www.tandfonline.com/doi/abs/10.1080/15230406.2014.965748

Tsai, P.J. and Yeh, H.C., Scrub typhus islands in the Taiwan Area and the association between scrub typhus disease and forest land use and farm worker density: Geographically weighted regression.
https://pdfs.semanticscholar.org/f89a/6f9f3837e88de6acc5c4d1196b6633f00ae9.pdf
https://spiral.imperial.ac.uk/handle/10044/1/6862

https://etda.libraries.psu.edu/catalog/12361

https://link.springer.com/chapter/10.1007/978-3-642-28894-4_30

https://link.springer.com/chapter/10.1007/978-94-007-0329-2_18

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776805/

Tsai, P.J., 2011. The analysis of geographically weighted regression pertaining to gastric cancer and Taiwanese ethnic communities. In International conference on Environmental, Biomedical and Biotechnology.
https://pdfs.semanticscholar.org/ec30/4f6f75373a5482a01d0de0478db08514ef8.pdf

https://www.econstor.eu/handle/10419/124131

https://pdfs.semanticscholar.org/6bed/ecda57493afc66ec277a232f513bac8c053aa.pdf

https://link.springer.com/article/10.1007/BF03354885

https://www.journals.sagepub.com/doi/abs/10.1177/156482651303400410

https://www.tandfonline.com/doi/abs/10.1080/19475680903271133

https://www.tandfonline.com/doi/abs/10.1080/00330124.2011.639631?casa_token=bN5RIaQqPAAAA:ypFGORUqGiCrCVwputVVmvLIBnGmtA3JW8Tu2zO41TsVCU9f3aJkQxWwUgdNIXcVWmXwn7rZiXQ

https://doi.org/10.1016/j.ehb.2011.09.006

https://www.mdpi.com/1660-4601/12/2/1425

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135656

https://www.mdpi.com/1660-4601/10/12/7207/htm

https://www.mdpi.com/1660-4601/10/11/5844/htm

https://doi.org/10.1186/s12942-020-00204-6

https://doi.org/10.4081/gh.2019.701

https://doi.org/10.3390/ijerph16040579

https://doi.org/10.1186/s12889-020-08607-7

http://www.aimjournal.ir/Article/aim-3740

\url{https://link.springer.com/article/10.1186/s12889-020-09550-3}

\url{https://doi.org/10.1080/09603123.2020.1821875}

\url{https://doi.org/10.1371/journal.pone.0238280}

\url{https://doi.org/10.4081/gh.2020.839}

\url{https://doi.org/10.1016/j.scitotenv.2020.138884}

\url{https://doi.org/10.1016/j.ajem.2018.08.060}

\url{https://link.springer.com/article/10.1007/s40471-019-00193-6}

\url{https://doi.org/10.3390/ijerph16245013}

https://doi.org/10.1111/tmi.13289

https://doi.org/10.3390/ijerph16030454

https://doi.org/10.1016/j.scs.2020.102418

https://doi.org/10.1371/journal.pntd.0007350

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015565/

https://jech.bmj.com/content/73/2/148.abstract

https://bmjopen.bmj.com/content/9/2/e024042.abstract

https://doi.org/10.3390/su12104324

https://doi.org/10.1177/0193945919867938

https://doi.org/10.3390/pathogens9060423

https://doi.org/10.1017/S0021932018000391

Namgung, M., Gonzalez, B. and Park, S., 2019. The Role of Built Environment on Health of Older Adults in Korea: Obesity and Gender Differences. *International journal of environmental research and public health, 16*(18), p.3486. https://doi.org/10.3390/ijerph16183486

https://doi.org/10.1371/journal.pone.0210502

https://www.nature.com/articles/s41598-020-69788-0

https://doi.org/10.1177/0033354918824330

https://doi.org/10.3390/ijerph17051481

https://doi.org/10.1080/12265934.2018.1500493

https://peerj.com/articles/9577/

https://doi.org/10.3390/ijerph18031043

https://doi.org/10.1016/j.scitotenv.2020.143343

https://doi.org/10.1016/j.scitotenv.2020.144036

https://doi.org/10.1016/j.scitotenv.2020.144257

https://doi.org/10.3390/ijerph18010290

https://doi.org/10.3390/ijerph18020604

https://www.nature.com/articles/s41598-021-84435-y

https://doi.org/10.3390/app11052022

https://doi.org/10.3390/su13052906

https://doi.org/10.1016/j.scitotenv.2020.144257

https://doi.org/10.1177/0956247820963962

https://doi.org/10.1111/pirs.12576

https://doi.org/10.1016/j.scs.2021.102752

https://doi.org/10.3390/ijerph17176274

https://doi.org/10.1029/2021GH000402

https://doi.org/10.1029/2020GH000358

https://doi.org/10.1016/j.scs.2021.103034

Li, Z., Qiao, S., Jiang, Y. and Li, X., 2021. Building a social media-based HIV risk behavior index to inform the prediction of HIV new diagnosis: a feasibility study.
https://doi.org/10.1097/QAD.0000000000002787

https://doi.org/10.1016/j.scitotenv.2021.145992

https://www.nature.com/articles/s41598-021-86987-5

https://doi.org/10.1080/03630242.2021.1942397

https://doi.org/10.4081/gh.2021.985

https://doi.org/10.1371/journal.pone.0253253

https://doi.org/10.1016/j.healthplace.2021.102571

https://doi.org/10.1011/jebm.12430

https://doi.org/10.14710/medstat.14.1.10-20

https://doi.org/10.3390/ijerph18115541

https://doi.org/10.1016/j.envres.2020.110470

Land Use:

https://www.nature.com/articles/s41598-018-36368-2

https://www.mdpi.com/2072-4292/10/4/633

http://www.koreascience.or.kr/article/JAKO201301671904178.page

Liao, Q., Li, M., Chen, Z., Shao, Y. and Yang, K., 2010, June. Spatial simulation of regional land use patterns based on GWR and CLUE-S model. In *Geoinformatics, 2010 18th International Conference on* (pp. 1-6). IEEE.

Karimi, A., Pahlavani, P. and Bigdeli, B., 2017. LAND USE ANALYSIS ON LAND SURFACE TEMPERATURE IN URBAN AREAS USING A GEOGRAPHICALLY WEIGHTED REGRESSION AND LANDSAT 8 IMAGERY, A CASE STUDY: TEHRAN, IRAN. *International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.*

Zhang, W., He, Q., Wang, H., Cao, K. and He, S., 2018. Factor analysis for aerosol optical depth and its prediction from the perspective of land-use change. *Ecological Indicators, 93*, pp.458-469.

https://www.tandfonline.com/doi/abs/10.18666/jlr-2016-v48-i2-6539

http://or.nsfc.gov.cn/bitstream/00001903-5/307897/1/1000014036870.pdf

http://iopscience.iop.org/article/10.1088/1755-1315/18/1/012170/meta

https://ascelibrary.org/doi/abs/10.1061/(ASCE)UP.1943-5444.0000274?casa_token=5dOGMrYTKzQAAAAA:ABAG5L6ZofOD7w3xfTdTYPYM_0rvDmf3aSxALIDScOPwiCd7UqR9ahpuhN55LoP2SSJG37KAAng
https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrn=18325505&AN=94967608&h=krrnojp08Ze9NhdcljpKV6wWrO7fOa0JOJrantigk0l2e6zSD7t8D1ycCtER1Admme%26Kzu8VwxKiBBq1ib%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dhost%26scope%3dsite%26authtype%3dcrawler%3d18325505%26AN%3d94967608

https://www.tandfonline.com/doi/abs/10.1080/01431161.2014.975377

Tang, Q., 2012. GIS-based urban land use characterization and population modeling with subpixel information measured from remote sensing data.
https://digitalcommons.lsu.edu/gradschool_dissertations/1282/

https://search.proquest.com/openview/424511a43345999febe5acf5cee8e4ddf/1?pq-origsite=gscholar&cbl=1766360

https://journals.sagepub.com/doi/abs/10.3141/2397-13?casa_token=amVpCQmzeL4AAAA%3AwMKDkhP2-r2WPC0OC1RnJewfvAviQQwvYR02k5-38ql-sUMjWwIf8O7Raaqm_BKOxRMNO_7Aj1

https://www.researchgate.net/profile/Noresah_Shariff/publication/235931337_International_Environmental_Modelling_and_Software_Society_iEMSs_2010_International_Congress_on_Environmental_Modelling_and_Software_Modelling_for_Environment's_Sake_Fifth_Biennial_Meeting_Modelling_U/links/0fcfd51469e0b69841000000.pdf

https://www.tandfonline.com/doi/abs/10.2747/1548-1603.44.2.166?casa_token=jUmNyM5oTvEAAAAA:V6ydvgwnrzTr4U_vB1Bc4eIAh2vA7u4Oy-K5wW16aTr2aS_4xcFfF51L3m0Dh-teDz_YvwaDHZdX

https://www.tandfonline.com/doi/abs/10.1080/2150704X.2012.736694

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081188

https://www.tandfonline.com/doi/abs/10.1080/15481603.2015.1072400?casa_token=x7C5ABuBBbCAAAAAA:ZB6glx7Fr2ek76fuUF1uleshFMoGDoaYmovUPam1WIWRF227T7T8WvgvQY9WMYNhCYAcFTgE-

196
https://doi.org/10.3846/jeelm.2020.12081

https://doi.org/10.1080/13658816.2019.1591416

https://doi.org/10.1080/01490400.2019.1600441

https://doi.org/10.1016/j.landusepol.2019.104408

https://doi.org/10.3390/su11102786

https://doi.org/10.1111/gcb.14611

https://doi.org/10.3390/su12114737

https://doi.org/10.3390/rs12091422

(Grus japonensis) in the coastal area of northern Jiangsu Province, China. *Land Use Policy, 90*, p.104269.
https://doi.org/10.1016/j.landusepol.2019.104269

https://doi.org/10.3390/su11216174

https://doi.org/10.3390/su12114449

https://doi.org/10.1016/j.compenvurbsys.2018.10.007

https://doi.org/10.1016/j.landusepol.2019.104249

https://doi.org/10.3390/rs11202359

https://doi.org/10.3390/rs12030357

https://doi.org/10.17221/102/2018-SWR

https://doi.org/10.3390/s19132929

Landslide:

Hong, H., Pradhan, B., Sameen, M.I., Chen, W. and Xu, C., 2017. Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector
https://www.tandfonline.com/doi/abs/10.1080/19475705.2017.1403974

https://link.springer.com/article/10.1007/s10346-009-0188-x

https://www.mdpi.com/1660-4601/13/5/487/htm

http://www.ejge.com/2013/Ppr2013.251alr.pdf

https://journals.sagepub.com/doi/abs/10.1177/0309133314528944?casa_token=eAJyCrPi4iAAA AAA%3Ayn8CvvtNg6hE6Hve3qEZkg68ZsXbZ8Kkg_sRFFpy9pxM71MrmmBgdzhicDea29dHk590QaFb91-

https://doi.org/10.3390/app10031107

https://doi.org/10.1016/j.jappgeo.2020.103987
https://doi.org/10.1371/journal.pone.0229818

https://doi.org/10.1016/j.ijdrr.2021.102283

https://doi.org/10.1016/j.scs.2021.103005

Methodology:

https://books.google.co.uk/books?hl=en&lr=&id=cULJd4Mp6AIC&oi=fnd&pg=PA227&ots=uvqzBvaSmH&sig=5w3EqcJAhhvjgvQGVliGA649JWI#v=onepage&q&f=false

https://www.tandfonline.com/doi/abs/10.1080/13658816.2018.1521523

https://www.tandfonline.com/doi/abs/10.1080/13658816.2013.865739

https://link.springer.com/chapter/10.1007/978-0-387-76815-1_6

Páez, A., Uchida, T. and Miyamoto, K., 2002. A general framework for estimation and inference of geographically weighted regression models: 2. Spatial association and model specification tests. *Environment and Planning A, 34*(5), pp.883-904. https://journals.sagepub.com/doi/abs/10.1068/a34133?casa_token=5VHsVs-H3AAAAAAA%3ACxbGKPLQY_VMIVTjMMrAadQWpgOgZPx1_oihM_8u_25Epvm-wZZC3-FSIfjr1t569sX5fOz4mlFl8

Leung, Y., Mei, C.L. and Zhang, W.X., 2000. Testing for spatial autocorrelation among the residuals of the geographically weighted regression. *Environment and Planning A, 32*(5), pp.871-890. https://journals.sagepub.com/doi/abs/10.1068/a32117?casa_token=dINLQ0Q82s0AAAAAA%3AHQq-1TlwoRkMCFyQnij7vr2dDzdQP-1TOmnv83Mx10gTIq2rB3xgo5DGem5m-P1IeoYo_oFuNL68g

https://www.sciencedirect.com/science/article/pii/S0304380005000153

https://journals.sagepub.com/doi/abs/10.1068/a44111

https://journals.sagepub.com/doi/abs/10.1177/0042098008091491

https://journals.sagepub.com/doi/abs/10.1068/a40256

http://www.nrcresearchpress.com/doi/abs/10.1139/X08-091#.XAH5ZOhi0

https://journals.sagepub.com/doi/abs/10.1068/a3768?casa_token=qLoaB34D7G0AAAAA%3ATrqFdwgvHYYyL1L-GoRWgDv666SGWCf3UbVj1vteJxYb-4f56OH85Io39E4Odtno-6RCXFp03v6g8

https://www.tandfonline.com/doi/abs/10.1080/13504850802314452

https://www.tandfonline.com/doi/abs/10.1080/19475683.2010.540258

http://www.nrcresearchpress.com/doi/abs/10.1139/x05-295#.XAMJP-hKi00

http://eprints.maynoothuniversity.ie/5768/

Mei, C.L., 2005. Geographically weighted regression technique for spatial data analysis. School of Science Xi’an Jiaotong University.
http://159.226.47.19/academic/workshop/workshop7/paper5.pdf

https://www.tandfonline.com/doi/abs/10.1080/00330124.2013.768130?casa_token=sRX9wFFws eoAAAAA:wSJ9gDMVT2MImo39ykZQmhpKd7lUHTHL51MJM-gZsuM8zOiDG4FoZoAl1drdxzwEy52XVZVWZreY

https://link.springer.com/article/10.1007/s10109-014-0199-6

https://research-repository.st-andrews.ac.uk/handle/10023/7052

Yu, D., 2009, August. Spatial interpolation via GWR, a plausible alternative?. In *Geoinformatics, 2009 17th International Conference on* (pp. 1-5). IEEE.

https://pdfs.semanticscholar.org/3881/91d891ed9a83a01781eac7b0f91aa0b747c0.pdf

Yilmazkuday, H. and Yazgan, M., E., 2009. Okun's Convergence within the US.

https://www.jstage.jst.go.jp/article/jappstat/38/3/38_3_111/_article/-char/ja/

https://ourarchive.otago.ac.nz/handle/10523/707

https://s3.amazonaws.com/academia.edu/documents/32450111/gisruk2013_submission_2.pdf?AWSAccessKeyId=AKIAIWOWYGYGZ2Y5UL3A&Expires=1544333473&Signature=IEg1IA6duNeVpr%2Fm0d7CYYhhEmMc%3D&response-content-disposition=inline%3B%20filename%3DTesting_geographically_weighted_multicol.pdf
https://journals.sagepub.com/doi/abs/10.1068/a43201

https://books.google.co.uk/books?hl=en&lr=&id=UWFmAQAAQBAJ&oi=fnd&pg=PA3&ots=bx_mDQCC6&sig=7NVN8ZC3QY9eVoKlfBZniyKPvLU#v=onepage&q&f=false

https://link.springer.com/chapter/10.1007/978-4-431-54000-7_6

http://www.koreascience.or.kr/article/JAKO201113663901163.page

https://link.springer.com/chapter/10.1007/978-94-007-3849-2_7

https://link.springer.com/chapter/10.1007/978-3-642-31994-5_10

Dong, G. and Harris, R., Modelling Spatial Heterogeneity: a Local Approach or a Global Approach?.

https://link.springer.com/article/10.1007/s10708-014-9551-0

https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-23430-9_92

https://www.ceeol.com/search/article-detail?id=133675

http://article.sapub.org/10.5923.j.statistics.20150501.01.html

https://www.tandfonline.com/doi/abs/10.1080/15230406.2013.831205?casa_token=HvU8i7Deo9gAAAAA:bNsDtrMfNPPnwCyM5k9WF0iQmTOZDDwdRKSbMAvyh0HH-FViXyHEdwRCDKfkU5XdGubgXyMvbwNMQ

https://pdfs.semanticscholar.org/b7b2/2638a7d6db7ee254b3a5050e749a6266e1dd.pdf

https://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1263731?casa_token=Sw4ikKGNKfoAAAAA:242Sc1zdUK0cXLzEL758yg2SN8G5VLmgPbiEZX_BF0MR5fSdjIO5qenyDNMjIMwU5bONrx8KcK0s

https://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1149181?casa_token=brwLitdra_UAAAAA:DLlgeZrhuFSvyEvwuVsg-BXxmxzvBOud-L6pSCmvpiNo0gI2FrFqa05w5IR9bMcBZ83sY3_C5UTB

https://www.tandfonline.com/doi/abs/10.1080/24694452.2016.1191990?casa_token=OuixEmjh5rAAAAA:JquMDpIMZJtd4uKFhk_NxjdOtUzWwfqOBkDev5_gzcQqfDUN00QtigP6f1qOH29jLrMCg1BjoLh

https://cloudfront.escholarship.org/dist/prd/content/qt04t0t6ds/qt04t0t6ds.pdf

http://orca.cf.ac.uk/91693/

https://www.tandfonline.com/doi/abs/10.1080/00949655.2017.1311896?casa_token=uzWOlu8mxQ8AAAAA:ot_5qyiFUbN8-od7Ycpa45UNyoSReDSu79P2YXzwmaJ79jYQlikFefhxqF8UVIfk7gh7_bHE6D3n

https://www.tandfonline.com/doi/abs/10.1080/14498596.2016.1138245

https://www.tandfonline.com/doi/abs/10.1080/15230406.2015.1081832?casa_token=2MRTeArPN2EAAAAA:CjLTGSTfx92mwmetOz_GwtWwZw6q4TrKN-Dogdh8-8Q1YCy9XPBm3AqSvEVf2QzXB8ORJ4d6bo

https://link.springer.com/chapter/10.1007/978-3-319-50590-9_11

Sodikin, I., Pramoedyo, H. and Astutik, S., GEOGRAPHICALLY WEIGHTED REGRESSION AND BAYESIAN GEOGRAPHICALLY WEIGHTED REGRESSION MODELLING WITH ADAPTIVE GAUSSIAN KERNEL WEIGHT FUNCTION ON THE POVERTY LEVEL IN WEST JAVA PROVINCE.

https://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1224886?casa_token=CEU4CItZGx8AAAAA:pFaMkHaZzGR7khkf5KMT8zDePSKJIPPYIKdaUU3lSyshI9Ya9MY8qdXPvbUulVBu7KZxhYtgoQ9r

Leong, Y.Y. and Yue, J.C., of the paper: A Modification to Geographically Weighted Regression.

http://eprints.whiterose.ac.uk/131530/

Yu, D., Peterson, N.A. and Reid, R.J., 2009. Exploring the impact of non-normality on spatial non-stationarity in geographically weighted regression analyses: Tobacco outlet density in New Jersey. *GIScience & Remote Sensing, 46*(3), pp.329-346. https://www.tandfonline.com/doi/abs/10.2747/1548-1603.46.3.329?casa_token=N75MFhQkQMkAAAAA:F4neW27fnjFiekwJ8gMC-86R9xjZweQ8iteIBm5cR6jkgzb6D9D-RYfB_YDvSCCddJ70w40hnb7q

Chambers, R., Pratesi, M., Salvati, N. and Tzavidis, N., 2007. M-quantile Geographically Weighted Models with Application to Small Area Estimation. In *Small Area Estimation 2007*. https://arpi.unipi.it/handle/11568/115868#.XDKYgFxKi00

http://www.geog.leeds.ac.uk/groups/geocomp/2017/papers/19.pdf

https://www.mdpi.com/1099-4300/19/2/53/htm

https://www.tandfonline.com/doi/abs/10.1080/00036846.2017.1279266

http://www.dbpia.co.kr/Journal/ArticleDetail/NODE07245298

Bidanset, P.E. and Lombard, J.R., 2017. Optimal kernel and bandwidth specifications for geographically weighted regression. *Applied Spatial Modelling and Planning*. https://books.google.co.uk/books?hl=en&lr=&id=cDolDwAAQBAJ&oi=fnd&pg=PA107&ots=0-1GLqdnCe&sig=rm439twk7ljNc1KH3YkMo8y2vX0#v=onepage&q&f=false

https://doi.org/10.1080/13658816.2018.1547386

https://doi.org/10.1080/15481603.2020.1760434

https://doi.org/10.1029/2019EA001037

https://doi.org/10.1080/01431161.2019.1693076

https://doi.org/10.1002/sam.11440

https://doi.org/10.1111/tgis.12557

https://doi.org/10.1080/10618600.2020.1754225

https://doi.org/10.1080/13658816.2019.1648813

https://doi.org/10.1111/tgis.12639

Politics:

http://eprints.maynoothuniversity.ie/5875/

https://link.springer.com/chapter/10.1007%2F978-3-642-13312-1_45

https://www.tandfonline.com/doi/abs/10.1080/10361146.2013.786674?casa_token=NGP7FUFGeLAAAAAA:XJXFdamt8XjoXSmrUbs-A82xHrr1i-5BAxY0XQic08ZgPodZ37GY1wCVasxGLejrP1Mkbvzk8d

https://link.springer.com/chapter/10.1007/978-3-642-03326-1_13

https://link.springer.com/article/10.1007%2Fs10708-012-9451-0

Vezzoni, C. and Mancosu, M., The Geography of Electoral Cycle in Northern Italy.
https://ecpr.eu/filestore/paperproposal/33a0982a-3784-4b4a-a262-e92df51313db.pdf

Real Estate:

Chan, W.M., 2014. COMPARISON OF SPATIAL HEDONIC HOUSE PRICE MODELS: APPLICATION TO REAL ESTATE TRANSACTIONS IN VANCOUVER WEST. http://summit.sfu.ca/item/14416

https://link.springer.com/chapter/10.1007/978-3-662-46994-1_72

https://cloudfront.escholarship.org/dist/prd/content/qt0qh4t98s/qt0qh4t98s.pdf

https://www.mdpi.com/2071-1050/9/11/2050

https://www.mdpi.com/2071-1050/10/5/1676

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205063

https://search.proquest.com/openview/688d25fa665556108487d3bdebad3df8/1?pq-origsite=gscholar&cbl=2032646

https://www.mdpi.com/2071-1050/9/9/1635

https://ascelibrary.org/doi/abs/10.1061/(ASCE)UP.1943-5444.0000386?casa_token=mda3Fadrgr7cAAAAA%3ayK1AyYcTcPTNY2KQkQLU0sXHVVe3BAmZVtqFI3pdgwRCMIOHXd4n_pulkycnOg-TzhT-2MBbHA

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10444/104440F/Implementing-GIS-in-real-estate-price-prediction-and-mass-valuation/10.1117/12.2280255.full?casa_token=QYl3DP7WOjsAAAAA%3atoHQetM3_loLt7wAU_g_GZOAbwbuhkA0nwjF5dz_J_OUchXpRSzObshPDrK5G8xmP6ivjEWw

https://www.tandfonline.com/doi/abs/10.3846/1648715X.2016.1247021

https://www.mdpi.com/2220-9964/5/1/4/htm

https://journals.sagepub.com/doi/abs/10.1177/0042098015572317?casa_token=SVNjDIkqhpcA AAAA%3ASnfIDp7THITl3aPdHcEP-fQH78J8yZyrmvBtVX6Xzq4r5srHQN6tDbnR7RXAWvDBCVJNuhkoHUO4

KC, K., Chhetri, P., Arrowsmith, C. and Corcoran, J., 2014. Modelling the spatial pattern of housing-renovation employment in Melbourne, Australia: an application of geographically weighted regression. *Applied GIS*, 10(4). https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler &jrnI=18325505&AN=100053305&h=A1xVtQyQyuB9N7cfdz4Tc8Hz9BSVBu5TrDVqCQj6R bUB5SRdyu3wDP83rBmuQ%2bUDXVVkD%2bMhzTcKJyL1hm7edA%3d%3d&crl=c&result Ns=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3d%true%26 profile%3ddehost%26scope%3dsite%26authtype%3dcrawler%26jrnI%3d18325505%26AN%3d1 00053305

https://www.researchgate.net/publication/266795320_Using_geographically_weighted_regression_for_housing_market_segmentation

https://www.tandfonline.com/doi/abs/10.1080/13658816.2013.878463

http://eprints.maynoothuniversity.ie/5816/

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164553

https://journals.sagepub.com/doi/abs/10.1068/b38093?casa_token=8wvFz-Mh45UAAAAA%3AQmx_XAPsKy2eeXst-UKgi495-1KW44fekGckPtZS4V4nbXP2q8E1-ThBz9Qc1hECbHQiMI20edU5

https://www.jstor.org/stable/26201690?seq=1#metadata_info_tab_contents

https://doi.org/10.3390/su11020471

https://doi.org/10.1016/j.habitatint.2020.102186

https://doi.org/10.1016/j.apgeog.2019.102136

https://doi.org/10.1061/(ASCE)UP.1943-5444.0000517

https://doi.org/10.3390/ijgi9010002

https://doi.org/10.1177/0042098019896977

https://doi.org/10.1177/2399808317702147

https://doi.org/10.3390/ijgi9050288

https://doi.org/10.3390/su12072792
https://doi.org/10.1155/2020/1079024

https://doi.org/10.1080/07352166.2020.1761257

https://doi.org/10.1080/14616688.2019.1586987

https://doi.org/10.1002/ijfe.1751

https://link.springer.com/article/10.1007/s11116-017-9834-7

https://doi.org/10.1080/10511482.2020.1719181

https://doi.org/10.1117/1078087418759605

https://doi.org/10.3390/su12010346

Regional Analysis:

https://www.tandfonline.com/doi/abs/10.1080/00330124.2017.1416302?casa_token=gk-3p6VqHvUAAAAA:mHw2tb9XUkiB1qyv3QOK5VwTNCBJAyY7vlPGLnCoWbJnvQgbTiPsQafip1QeWgM__OHNiENJUCJn

Artelaris, P., Regional convergence and divergence in the enlarged european union: a comparison of different spatial econometric approaches.

https://www.tandfonline.com/doi/abs/10.1080/17421770701251905

https://doi.org/10.7916/jmtec.v3i2.746
http://s-space.snu.ac.kr/handle/10371/4827

https://doi.org/10.3390/app9061116

https://doi.org/10.1016/j.scs.2020.102530

https://doi.org/10.1007/s11769-021-1202-z

Software:

https://sgsup.asu.edu/sites/default/files/SparcFiles/mgwr_1.0_manual_final.pdf

https://arxiv.org/abs/1306.0413

http://eprints.maynoothuniversity.ie/6131/
Lu, B., Harris, P., Charlton, M. and Brunsdon, C., 2014. The GWmodel R package: further
topics for exploring spatial heterogeneity using geographically weighted models. Geo-spatial
https://www.tandfonline.com/doi/abs/10.1080/10095020.2014.917453

Lu, B., Harris, P., Gollini, I., Charlton, M. and Brunsdon, C., 2013. GWmodel: an R package for
exploring spatial heterogeneity. GISRUK 2013, pp.3-5.
df

implementation of multiscale geographically weighted regression for investigating process
spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6), p.269.
https://doi.org/10.3390/ijgi8060269

Terrorism:

Yildirim, J. and Öcal, N., 2013. Analysing the determinants of terrorism in Turkey using
https://www.tandfonline.com/doi/abs/10.1080/10242694.2012.695034

Öcal, N. and Yildirim, J., 2010. Regional effects of terrorism on economic growth in Turkey: A
https://journals.sagepub.com/doi/abs/10.1177/0022343310364576?casa_token=g5uNFFAgIL8A
AAAA%3A_WwaasPV8cSOc2pGBrY7dj8BU74Gg1_7spsv8yk6mzMBtMC_GoI7u2NkgaaG
h2JPSiDhNxVhYUh

Transportation:

networks based upon previous experience: a Geographically Weighted Regression

Andersson, J., 2017. Using Geographically Weighted Regression (GWR) to explore spatial
variations in the relationship between public transport accessibility and car use: a case study in
Lund and Malmö, Sweden. Student thesis series INES.
https://lup.lub.lu.se/student-papers/search/publication/8919808

https://trid.trb.org/view/1118238

https://www.mdpi.com/2413-8851/2/1/14

https://www.tandfonline.com/doi/abs/10.1080/15568318.2017.1422301

https://www.mdpi.com/2071-1050/10/12/4684

Cartlidge, J., Gong, S., Bai, R., Yue, Y., Li, Q. and Qiu, G., 2018, March. Spatio-temporal prediction of shopping behaviours using taxi trajectory data. In *Big Data Analysis (ICBDA), 2018 IEEE 3rd International Conference on* (pp. 112-116). IEEE.

https://journals.sagepub.com/doi/abs/10.1177/0361198118788430?casa_token=qk9eGS4Mv7kA/AAAAA:ObcJBydguR2ALkI9R6vkKz4VEhtarHNRgQUmXjO1Y5g4avVlcN4BaTd4oE2TNmECQFyg2LK2N-f

262

https://www.mdpi.com/2076-3263/6/1/16

https://www.tandfonline.com/doi/abs/10.1080/00036846.2017.1302064

Gong, S., Cartlidge, J., Yue, Y., Qiu, G., Li, Q. and Xin, J., 2017, November. Geographical huff model calibration using taxi trajectory data. In *Proceedings of the 10th ACM SIGSPATIAL Workshop on Computational Transportation Science* (pp. 30-35). ACM.
https://dl.acm.org/citation.cfm?id=3151553

https://www.igi-global.com/article/modeling-the-spatial-variation-in-us-airfares-utilizing-geographically-weighted-regression/119617

Anciaes, P.R., 2014, June. Using locally weighted regressions to model social inequalities in exposure to urban road traffic noise. European Urban Research Association (EURA) and the Urban Affairs Association (UAA).
http://discovery.ucl.ac.uk/1434196/1/Anciaes_using_locally_weighted_regressions_to_model.pdf

https://scholarworks.montana.edu/xmlui/handle/1/8773

https://trid.trb.org/view/1289920

https://search.proquest.com/openview/6532bf8c73e4211412147178d734e7a5/1?casa_token=FMm6GJcURlIAAAAAA:17m3gxQK5xKlbslgAUEwGvQd8awAQbrLFQENNokqhsquHHJKWhrT3wk_CUPEhtYu7L8XMj1SQ&cbl=54701&pq-origsite=gscholar

http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A759739&dswid=0.9630113408174472

https://s3.amazonaws.com/academia.edu/documents/38257263/v9_Yeboah_et_al_GISRUKPaper_Template2015.pdf?AWSAccessKeyId=AKIAIWOYYYGZ2Y53UL3A&Expires=1544212911&Signature=zAcQoSvROknwFPbx5eWPg1X%2BY%3D&response-content-disposition=inline%3B%20filename%3DUnderstanding_car_ownership_elasticities.pdf

file:///C:/Users/wluo23/Downloads/fulltext_stamped.pdf

https://www.tandfonline.com/doi/abs/10.1080/01615440.2013.803414

https://www.sciencedirect.com/science/article/pii/S0967070X16302402

https://journals.sagepub.com/doi/pdf/10.1177/0361198106197700123

https://journals.sagepub.com/doi/pdf/10.3141/1879-12

https://journals.sagepub.com/doi/abs/10.1068/a36116?casa_token=ob6gPUmyNSwAAAAA%3AAbh9wgpj8y4-r3Kc3FhiTDryAKi4BPW2efbF15AQL3KxoPsGIINpnDzyA1Bu9qNb4HGqATfjXIppWda

https://journals.sagepub.com/doi/pdf/10.1177/0361198106197200113?casa_token=5TrYP4OgwIQAIAIA%3AnaBZuNDfVSBG5zyt3aJeO0lPG0uHJh2f4mv6vHVPo0N_X414T5aVQ_WACgyLLjAVoCpJlv_rG7qc

https://journals.sagepub.com/doi/abs/10.1068/a38336?casa_token=x4olOdt_5AYAAAAA%3AhZvTLxrwWEndExkA1bpZ7ercbewMBlb8yGzpTjm294itjvyn1zhP8JQDkbeiKP37PFzpUb55RTdk

https://journals.sagepub.com/doi/abs/10.3141/2276-18?casa_token=udUaBVWBEFYAAAAA%3AjxbgTt2MQWkk-MIJkmMkFvpNNQ8XEhouztCqpMwjkkiNjg_vIECb0g20IZJ6boGvqlAdTVUF1gc

https://doi.org/10.1016/j.trf.2020.02.003

https://doi.org/10.1016/j.jtrangeo.2019.102617

https://doi.org/10.1016/j.tranpol.2020.03.006
https://doi.org/10.3390/app9204217

https://doi.org/10.1016/j.apgeog.2019.102130

https://doi.org/10.1177/0361198119844976

https://doi.org/10.1016/j.jtrangeo.2019.102631

https://doi.org/10.1016/j.jtrangeo.2020.102663

https://doi.org/10.1016/j.jtrangeo.2019.03.012

https://doi.org/10.1016/j.trf.2019.09.003

https://doi.org/10.1155/2019/8521649

https://doi.org/10.1016/j.tra.2020.06.022

https://doi.org/10.1177/0361198120924630

https://doi.org/10.3390/su12052034

https://www.hindawi.com/journals/jat/2020/7538508/

https://doi.org/10.1177/0361198119837221

https://doi.org/10.1177/0361198119850790

https://www.nature.com/articles/s41370-019-0141-6

https://doi.org/10.1111/pirs.12523

https://doi.org/10.1080/01944363.2019.1692690

https://doi.org/10.1177/0361198120931100
https://doi.org/10.1080/01441647.2020.1747570

https://doi.org/10.1080/12265934.2020.1816206

https://doi.org/10.3390/su11102733

https://doi.org/10.1080/23249935.2018.1523250

https://doi.org/10.3390/su12052143

https://doi.org/10.1080/17421772.2020.1749336

https://peerj.com/articles/cs-224/?utm_source=TrendMD&utm_campaign=PeerJ_TrendMD_1&utm_medium=TrendMD

https://doi.org/10.1016/j.jtrangeo.2020.102850

https://doi.org/10.1016/j.trd.2020.102574

Urban Studies:

Shi, Y., Ho, H.C., Xu, Y. and Ng, E., 2018. Improving satellite aerosol optical Depth-PM2.5 correlations using land use regression with microscale geographic predictors in a high-density urban context. *Atmospheric Environment, 190*, pp.23-34.

https://doi.org/10.3390/ijig10010031

https://doi.org/10.3390/ijerph18137115

https://www.researchgate.net/publication/260133298_Exploring_the_Relationship_among_Urban_System_Characteristics_and_Trips_Generation_through_a_GWR

https://ascelibrary.org/doi/abs/10.1061/(ASCE)CO.1943-7862.0000654

https://link.springer.com/chapter/10.1007/978-1-4020-9642-6_4

https://www.tandfonline.com/doi/abs/10.2747/1548-1603.45.4.426?casa_token=VJP3IIgJIfwAAAAA:4K2GH1eBibS_tJ4unewmUMr9FD9jf7ePxfp-TjXQ-d3YaoztquKDkh3qvqGB_5TnkA7xERKj6ySS

https://link.springer.com/content/pdf/10.1007/3-540-26676-3_12.pdf

Wu, W., 2012. Spatial variations in amenity values: new evidence from Beijing, China. http://eprints.lse.ac.uk/58536/

http://le.uwpress.org/content/84/2/241.short

https://www.tandfonline.com/doi/abs/10.1111/j.1467-8306.2004.00411.x

https://www.tandfonline.com/doi/abs/10.1111/j.1467-9272.2005.00496.x

https://doi.org/10.3390/ijerph16132318

https://doi.org/10.1080/19439962.2020.1712671

https://doi.org/10.1016/j.scs.2019.101863

https://doi.org/10.1016/j.jclepro.2019.05.389

https://doi.org/10.1016/j.landurbplan.2020.103806

https://doi.org/10.1111/sjtg.12328

https://doi.org/10.1016/j.jag.2020.102131

https://doi.org/10.3390/app9235224

https://doi.org/10.1016/j.comenvurb.2020.101459

Steenberg, J.W., Robinson, P.J. and Duinker, P.N., 2019. A spatio-temporal analysis of the relationship between housing renovation, socioeconomic status, and urban forest
https://doi.org/10.1177/2399808317752927

https://doi.org/10.1177/2399808320924678

https://doi.org/10.1371/journal.pone.0235858

https://doi.org/10.3390/su12062252

https://doi.org/10.1080/10095020.2020.1754138

https://doi.org/10.1080/00330124.2019.1578976

https://ascelibrary.org/doi/full/10.1061/%28ASCE%29UP.1943-5444.0000593?casa_token=JexkJtfE2F4AAAAA%3A82wBRbRQupQzcy4ONDsxpaPqaJzNUe-sL-HPJYk7Z7W3rXesujB26yq1fiO0yCBfiVvFO8

https://doi.org/10.1016/j.compenvurbsys.2020.101544

https://doi.org/10.1016/j.landurbplan.2020.103992

https://doi.org/10.3390/ijerph18020525

https://doi.org/10.3390/ijgi10010013

https://doi.org/10.1080/09640568.2021.1884050

https://doi.org/10.1016/j.ufug.2021.127043

https://doi.org/10.1016/j.scs.2021.102769

https://doi.org/10.1016/j.scs.2021.102769

https://doi.org/10.18800/economia.202101.006

https://doi.org/10.3390/land10040348

https://doi.org/10.3390/land10060633

https://doi.org/10.1080/19475683.2020.1831603

https://doi.org/10.1016/j.tbs.2022.06.011

https://doi.org/10.1186/s12982-022-00117-8

Vegetation:

https://www.tandfonline.com/doi/abs/10.1080/17550874.2013.843604