A Bibliography of Regression-based Local Modeling Research

Compiled by:

A. Stewart Fotheringham
Wei Luo
Hanchen Yu
Sarah Bardin
Taylor Oshan
Ziqi Li
Mehak Sachdeva

Spatial Analysis Research Center (SPARC)
School of Geographical Sciences and Urban Planning, ASU
Lattie F. Coor Hall, 975 S Myrtle Ave, Tempe, AZ 85281
Contents

Agriculture: 3
Archaeology: 13
Cartography and Geovisualization: 13
Community: 16
Crime: 17
DEM: 23
Demographics: 24
Dialect: 31
Economics: 31
Ecosystem: 47
Education: 63
Energy: 65
Environment: 69
Fire: 127
Fisheries: 131
Flood: 132
Forestry: 134
Geology: 142
Health: 145
Land Use: 188
Landslide: 198
Methodology: 200
Politics: 228
Real Estate: 230
Regional Analysis: 249
Software: 252
Terrorism: 252
Transportation: 253
Urban Studies: 273
Vegetation: 290
Agriculture:

Sassi, M., 2010. . Spatial Approach to Territorial Convergence Across the EU-15 Regions and the Common Agricultural Policy. *Research Topics in Agricultural and Applied Economics, 1*, p.114. https://books.google.co.uk/books?hl=en&lr=&id=oUAxGETbYdYC&oi=fnd&pg=PA114&ots=_melnpkrXU&sig=R_wpaxxTaX7SzL06Vw4BiMf0R3c#v=onepage&q&f=false

Lagona, M.C., Geographical Equity of the EU’s Agricultural Subsidies in Belgium.
http://newmedit.iamb.it/share/img_new_medit_articoli/1089_11yu.pdf

https://opencommons.uconn.edu/dissertations/1237/

https://link.springer.com/article/10.1007/s11769-017-0906-6

https://dl.sciencesocieties.org/publications/cs/abstracts/57/5/2478

https://academicjournals.org/journal/SRE/article-abstract/8FCC67B45689

https://www.ingentaconnect.com/content/tcsae/tcsae/2014/00000030/00000009/art00001

https://pdfs.semanticscholar.org/b385/65bc3cc91e5becff9718d23faa419fde4553.pdf

https://www.jstor.org/stable/pdf/44131327.pdf?casa_token=0P3qbw-Bkq8AAAAA:qz78hLv1VZ-mFF-QvQFBHmncbwMf9esHe-2GjxTBXa5ScaK_ScMOUn-Utq_7AFaiuYDzu3qzwXYy7brxrIG95eqQMX-rYee-7kGkRAbbCeRedAMayCk

https://doi.org/10.1016/j.agrformet.2019.05.022

https://doi.org/10.1109/TGRS.2019.2941696

https://doi.org/10.3390/rs11020111

https://doi.org/10.3390/rs11091032

https://doi.org/10.1016/j.jhydrol.2020.125156

https://doi.org/10.3390/su11123423

https://doi.org/10.2134/agronj2019.03.0165

https://doi.org/10.3390/su12176904

https://doi.org/10.1002/agi2.20179

https://doi.org/10.1111/sum.12590

https://doi.org/10.1016/j.scitotenv.2020.139565

https://doi.org/10.3390/rs12193247

https://doi.org/10.3390/agronomy10111720

https://doi.org/10.1016/j.scitotenv.2020.141977

Chen, J., Qu, M., Zhang, J., Xie, E., Zhao, Y. and Huang, B., Improving the spatial prediction accuracy of soil alkaline hydrolyzable nitrogen using geographically weighted principal component analysis-geographically weighted regression kriging (GWPCA-GWRK). *Soil Science Society of America Journal.* https://doi.org/10.1002/saj2.20189

Archaeology:

Cartography and Geovisualization:

http://eprints.undip.ac.id/58237/

http://www.agocg.ac.uk/sosci/casestudies/brunsdon/brunsdon.pdf

Foley, P. and Demšar, U., Towards Using Geovisual Analytics to Interpret the Output of Geographically Weighted Discriminant Analysis.

http://eprints.maynoothuniversity.ie/5863/

https://www.tandfonline.com/doi/abs/10.1080/13658816.2012.722638

https://research-repository.st-andrews.ac.uk/handle/10023/15680

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.7756&rep=rep1&type=pdf

https://www.tandfonline.com/doi/abs/10.1179/000870406X114658

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286400/

https://www.tandfonline.com/doi/abs/10.2747/15481603.46.3.273?casa_token=T64M4LurlvQAAAAA:Y44iamBUdfWhN_Kz7iFEuMcmlydMtF0Sفا6l5vVd0pltP09xI0EXL69IECPqD7dcYwRg0Nvkbnj

https://journals.sagepub.com/doi/abs/10.1057/PALGRAVE.IVS.9500187?casa_token=PCFRduLJZIAAAAA%3APf9fInSAvzy2MCOgDGrmg-Zm3fYJLPQQE1F0fuvhQuptrHzYFoLOtTd1XhrSmYG-hfKYUnXIFLF

https://www.tandfonline.com/doi/abs/10.1179/000870408X311378

https://doi.org/10.1080/15230406.2019.1687014

https://essd.copernicus.org/articles/12/1913/2020/

https://doi.org/10.2112/JCOASTRES-D-19-00029.1
Community:

https://doi.org/10.1177/0887403420911415

https://doi.org/10.3390/ijgi10060409

Crime:

http://geography.uwo.ca/research/the_great_lakes_geographer/docs/Volume%2011/2_Malcz_etal.pdf

https://bmjopen.bmj.com/content/8/2/e018437.abstract

https://www.mdpi.com/2076-0760/8/2/50

https://www.mdpi.com/2220-9964/8/1/51

https://www.mdpi.com/2220-9964/7/3/101

https://link.springer.com/chapter/10.1007/978-94-017-8757-4_8

https://www.tandfonline.com/doi/abs/10.1080/02732173.2014.857184

https://shsu-ir.tdl.org/handle/20.500.11875/2359

https://link.springer.com/article/10.1007/s10661-017-6445-x

https://journals.sagepub.com/doi/abs/10.1177/0047287518797197?casa_token=FhNGQ7EurlQAAAAA:s_dZ1xOBJjf8aMn2H9WeqvdoLiN7FWrBHjOF1UlilhTmKHIptOc7ypJP0K9RnKzkEeJC19XJ8ewDt

https://link.springer.com/chapter/10.1007/978-981-10-2772-7_15

Nezami, S. and Khoramshahi, E., 2016, June. Spatial modeling of crime by using of GWR method. In *Geodetic Congress (Geomatics), Baltic* (pp. 222-227). IEEE.

https://link.springer.com/chapter/10.1007/978-94-017-8757-4_12

https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrn=18104045&asa=Y&AN=97376999&h=VDAkyV3HOjHrPORkkejLNTiUgZ%2bHXV5EMY9vx%2b%2fmPVK42%fGyRcULTw94%2faJ3aBso6hbTvMqixVpmLFeUdtaQ%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dhost%26scope%3dsite%26authtype%3dcrawler%26jrn%3d18104045%26asa%3dY%26AN%3d97376999

Xiaobing, Y.A.N., Spatial non-stationarity of the factors affecting crime rate at province scale in China. *PROGRESS IN GEOGRAPHY, 32*(7), pp.1159-1166.

https://link.springer.com/chapter/10.1007/978-1-4419-5647-7_8

https://www.hindawi.com/journals/jad/2013/356152/abs/

https://doi.org/10.1177/0886260519839429

https://doi.org/10.1080/07418825.2019.1679862

DEM:

https://doi.org/10.1016/j.scitotenv.2021.147140

http://www.spatial-accuracy.org/system/files/img-X03141139_0.pdf

https://doi.org/10.1111/gwat.13041
Demographics:

https://muse.jhu.edu/article/361732/summary?casa_token=wvZtNIg6krIAAAAA:9wVqva33nL

https://link.springer.com/article/10.1007/s11205-017-1681-6

http://sfsu-dspace.calstate.edu/handle/10211.3/204069

https://link.springer.com/chapter/10.1007/978-3-319-43329-5_21

https://search.proquest.com/openview/47746d0e68f252ea4e7a2ea5c8f6dd96/1?pq-origsite=gscholar&cbl=29482

https://www.tandfonline.com/doi/abs/10.1080/09599916.2013.781204

https://www.tandfonline.com/doi/abs/10.2747/1548-1603.41.3.187

https://www.tandfonline.com/doi/abs/10.1080/22797254.2018.1459209

https://www.tandfonline.com/doi/abs/10.1080/10485252.2018.1499907

https://www.tandfonline.com/doi/abs/10.1080/00049182.2018.1508542

https://doi.org/10.1080/24694452.2020.1785271

Dialect:

Economics:

https://oaktrust.library.tamu.edu/handle/1969.1/151672

http://dergipark.gov.tr/fsecon/issue/31372/334741

https://www.cambridge.org/core/journals/journal-of-agricultural-and-applied-economics/article/an-application-of-spatial-poisson-models-to-manufacturing-investment-location-analysis/CC7D5ABEF2DD19A8D2E87435D0BD8E1D

https://link.springer.com/article/10.1007/s101090200081

https://www.tandfonline.com/doi/abs/10.1080/00130095.2018.1526074

https://www.mdpi.com/2220-9964/7/1/17

https://akademiai.com/doi/abs/10.1556/032.2017.67.2.1

https://www.tandfonline.com/doi/abs/10.1080/08985626.2016.1255432

Chaowu, X.I.E. and Jun, Z.H.A.N.G., 2015. Spatial Characteristics and Influential Factors of Tourism Emergencies in China using Casualty Scales as an Indicator. *Tourism Tribune/Lvyou Xuekan*, 30(1). https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler &jrnl=10025006&AN=100357611&h=LYPmrQ8j%2Bjhz6Kt9SMhVhrqQldOwVaszoF5dQYgFsqN2ZJ3KwcmnhIOBkJ5xmo%2bfvRacnXP1VCZ%2fntcOrWFQ%3d%3d&crl=c&resultNs =AdminWebAuth&resultLocal=ErrCrlNotAuth&crllhashurl=login.aspx%3dtrue%26profile%3dhost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d10025006%26AN%3d100357611

Pede, V.O., Sparks, A.H. and McKinley, J.D., 2012, February. Regional income inequality and economic growth: a spatial econometrics analysis for provinces in the Philippines. In *56th AARES Annual Conference, Fremantle, Western Australia*. https://www.researchgate.net/profile/Adam_Sparks2/publication/254385756_Regional_Income_Inequality_and_Economic_Growth_A_Spatial_Econometrics_Analysis_for_Provinces_in_the_Philippines/links/02e7e5387e6784356a000000.pdf

https://core.ac.uk/download/pdf/82515248.pdf

http://matematicas.unex.es/~idelpuerto/WEB_EYSM/Articles/at_robert_breitenecker_art.pdf

https://link.springer.com/chapter/10.1007/978-3-642-12156-2_4

https://digitalcommons.lsu.edu/gradschool_dissertations/1626/

Regional Science Policy & Practice, 2(2), pp.97-120.

Cheng, S. and Li, H., 2011. Spatially varying relationships of new firm formation in the United States. *Regional Studies, 45*(6), pp.773-789. https://rsa.tandfonline.com/doi/abs/10.1080/00343401003713415?casa_token=lZuQgAc2ULsAAAAA:PUDrWEaAMpjIPxZ08nZkeQpf05pkDnhmz_RXLlBSa6WxaJ6p7sBsKDijXZr5iTaALC9Tpylr1so0_.XAMj8ehKi00

Breitenecker, R.J. and Harms, R., 2010. Dealing with spatial heterogeneity in entrepreneurship research. *Organizational Research Methods, 13*(1), pp.176-191. https://journals.sagepub.com/doi/abs/10.1177/1094428109338871?casa_token=L5o-4CgNwssAAAAAA%3AWUXuLWMcnPfE4CWU74NrnHZgURuOGGeri0BiCSPmVRRxscVE0Q_cPkQArfLS379JaH57lo3N5Xmm

https://doi.org/10.1111/jors.12458

https://doi.org/10.1016/j.ijinfomgt.2020.102072

https://doi.org/10.1016/j.ecolecon.2019.05.025

https://doi.org/10.1016/j.cities.2019.01.015

https://doi.org/10.1080/13547860.2018.1503765

Ecosystem:

through a Geographically, U.C.E. and Model, W.A., 2004. 11 Places and Relationships in Ecological Inference. Ecological Inference, p.245. https://books.google.co.uk/books?hl=en&lr=&id=g0G4Gx_kx6gC&oi=fnd&pg=PA245&ots=NH4zEQ9HJJ&sig=F5zKtE2mYHZ88lsF1FT1tUVyrls#v=onepage&q&f=false

Sawut, R., Kasim, N., Abliz, A., Hu, L., Yalkun, A., Maihemuti, B. and Qingdong, S., 2018. Possibility of optimized indices for the assessment of heavy metal contents in soil around an

https://www.tandfonline.com/doi/abs/10.1080/13658816.2018.1471607?casa_token=RD3gO4LuqcAAAAA:KFg96XA6VxlxGxHTJT0cqtDBFEq5uiPGVes3uwKHNbqADM5RwTKUMzu8efFbbOg50_Sk2SCTXACv

https://www.ingentaconnect.com/content/tcsae/tcsae/2016/00000032/00000021/art00035

https://digitalcommons.lsu.edu/gradschool_dissertations/4306/

https://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler &jrnldid=10019332&AN=103434098&h=8timnkf8ygT5eG8acUdHg7dEVs25mR8otSqPTiC7rCW I08D7futmzLlVbl2hDLa9t7LgBfWrWd%2bFdBVZoU6xw%3d%3d&crl=c&resultNs=Admin WebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3d ehost%26scope%3dsite%26authtype%3dcrawler%26jrnldid%3d10019332%26AN%3d103434098

https://link.springer.com/article/10.1007/s10661-014-3801-y

https://www.mdpi.com/2220-9964/4/2/783

https://dl.sciencesocieties.org/publications/sssaj/abstracts/78/5/1765

Gagliasso, D., 2012. Evaluating the accuracy of imputed forest biomass estimates at the project level. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/qv33s030v

https://doi.org/10.18494/SAM.2019.2300

https://doi.org/10.1016/j.ecoleng.2019.05.001

https://doi.org/10.1016/j.ecolind.2020.106681

https://doi.org/10.1016/j.ecolind.2020.106680

https://doi.org/10.1016/j.ecolind.2020.106654

https://doi.org/10.1111/geb.12999

https://doi.org/10.1111/ddi.12927

https://doi.org/10.1016/j.landurbplan.2020.103904

https://doi.org/10.1016/j.apgeog.2019.02.009

https://doi.org/10.1016/j.ecolind.2019.105985

https://doi.org/10.3390/rs11232750

https://doi.org/10.3390/rs11040414

https://doi.org/10.1016/j.scitotenv.2019.135005

https://doi.org/10.1016/j.ecolind.2019.05.052

https://doi.org/10.3390/rs12071134

https://doi.org/10.1002/ldr.3494

https://doi.org/10.3390/su12041600

https://doi.org/10.1002/rse2.89

https://doi.org/10.1111/ele.13433

https://doi.org/10.1111/geb.12974

https://doi.org/10.1111/nph.16447

Education:

https://www.tandfonline.com/doi/abs/10.1080/00045608.2010.518020?casa_token=dWG0I76mW-IAAAAA:MRT6Vo4W2O39FBBSZeGSevKfCDpLB-Vji97SOrChZRftvQvYORR4RJGJ6meGr09lXhwePWtQva

Sage, J.L., When All Miles Are Not the Same: Spatial Non-Stationarity Impacts of Educational Travel Time Requirements.

http://www.agecon.purdue.edu/sea_2010/Sessions/When%20All%20Miles%20Are%20Not%20the%20Same.pdf

https://doi.org/10.1016/j.apgeog.2019.03.009

https://doi.org/10.1080/16549716.2020.1785737

https://doi.org/10.1177/0013124517747036

Energy:

http://www.scielo.br/scielo.php?pid=S1678-69712010000400008&script=sci_arttext

https://www.mdpi.com/2071-1050/10/5/1511/htm

Environment:

http://iopscience.iop.org/article/10.1088/1755-1315/199/2/022009/meta

https://journals.vgtu.lt/index.php/JEELM/article/view/5378

https://www.ingentaconnect.com/content/asprs/pers/2018/00000084/00000012/art00011

https://www.tandfonline.com/doi/abs/10.1080/03650340.2016.1249475

Yu, W., Liu, Y., Ma, Z. and Bi, J., 2017. Improving satellite-based PM 2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting. *Scientific reports, 7*(1), p.7048. https://www.nature.com/articles/s41598-017-07478-0

Lim-Wawde, K., KAUFFMAN, R.J., Kam, T.S. and Dawson, G.S., 2017. Location matters: Geospatial policy analytics over time for household hazardous waste collection in California. https://ink.library.smu.edu.sg/sis_research/3686/

combined geophysical-statistical method with information from satellites, models, and monitors. *Environmental science & technology*, 50(7), pp.3762-3772.
https://pubs.acs.org/doi/abs/10.1021/acs.est.5b05833

https://digital.lib.washington.edu/researchworks/handle/1773/22568

https://www.e3sconferences.org/articles/e3sconf/abs/2013/01/e3sconf_ichm13_35007/e3sconf_ichm13_35007.html

https://www.tandfonline.com/doi/abs/10.1080/01431161.2014.902550

https://www.tandfonline.com/doi/abs/10.2747/1548-1603.45.1.47?casa_token=9icN1o3KYm0AAAAA:NDYobrw7MNBEzKPTP5JIQf6xTH1nzSU NPugKnS7StAA4eICW3c72enSl07pOY42VucNRoh1QuaD

https://www.tandfonline.com/doi/abs/10.1111/j.1467-8306.2005.00459.x?casa_token=rai8EL9LutAAAAAA:Twc3RnRU3o-gcxIR_7DKf4_i9Xn0l2EVbeD2Nho12bCxOf6nCRJ-R5sIFpx7V0PvMETO2atpQn7Z

https://digitalcommons.buffalostate.edu/greatlakes_theses/7/

https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler &jrnln=16821750&AN=129415003&h=n5bG58vu0WK1CFlyzjuRz1qxCCK8L2iMtSYWzkOEU QlIZFr2ETtfoXLBPcf%2Fs75qOgL2u5Ts1eV3P7mmQ%3d%3d&crl=c&resultNs=Admin WebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3Fdirect%3dtrue%26profile%3d ehost%26scope%3dsite%26authtype%3dcrawler%26jrnln%3d16821750%26AN%3d129415003
https://link.springer.com/article/10.1007%2Fs00477-017-1503-z

https://www.mdpi.com/2072-4292/10/1/119

https://www.mdpi.com/2071-1050/10/7/2242

https://link.springer.com/chapter/10.1007/978-3-319-66092-9_8

https://dl.sciencesocieties.org/publications/jeq/abstracts/47/4/718?access=0&view=article

https://www.tandfonline.com/doi/abs/10.1080/02626667.2018.1431647

Couloigner, I., Bertazzon, S., Underwood, F., Johnson, M. and Van Ryswyk, K., Spatial Modelling of Air Pollutants in the City of Calgary and Surrounding Areas.
https://pdfs.semanticscholar.org/1c52/ddbd725aa65d47b189bc20051b77066f5a3b.pdf

https://journals.ametsoc.org/doi/abs/10.1175/WCAS-D-15-0070.1

https://www.mdpi.com/2072-4292/9/6/620/htm

https://link.springer.com/content/pdf/10.1007/s11205-017-1819-6.pdf

https://www.mdpi.com/2220-9964/6/10/308

https://cloudfront.escholarship.org/dist/prd/content/qt8kv3n3bq/qt8kv3n3bq.pdf

https://www.tandfonline.com/doi/abs/10.1080/10106049.2016.1195883

https://www.tandfonline.com/doi/abs/10.1080/02626667.2015.1133911

https://www.mdpi.com/2073-4441/8/6/266/html

https://link.springer.com/article/10.1007/s41324-017-0097-3

https://www.mdpi.com/2072-4292/8/9/760/htm

Moon, H. and Choi, M., 2015. Dryness Indices Based on Remotely Sensed Vegetation and Land Surface Temperature for Evaluating the Soil Moisture Status in Cropland-Forest-Dominant Watersheds. *Terrestrial, Atmospheric & Oceanic Sciences*, 26(5). https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10170839&AN=110927062&h=serFFt0o5jmXRbrv2fZOTalRgY9GfT4Blczhz%2fQgF5xdwdOiDS41sJ6ynBKgcO8jXSigv2K93U0goGbMh8I%2b%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3dtrue%26profile%3d&ehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d10170839%26AN%3d110927062

https://www.hindawi.com/journals/bmri/2015/684618/

https://pdfs.semanticscholar.org/6d8a/565d43abe89e1ed0c65c185c91880dd36101.pdf

Mucciardi, M., Bertuccelli, P. and Di Giuseppe, E., Local Spatial Modeling of Meteorological Variables.

http://adsabs.harvard.edu/abs/2013JApSc..13.2384D

https://link.springer.com/chapter/10.1007/978-94-007-0329-2_20

https://www.hindawi.com/journals/mpe/2012/369539/abs/

https://link.springer.com/chapter/10.1007/978-3-7908-2879-5_11

https://link.springer.com/chapter/10.1007/978-90-481-2322-3_3

https://link.springer.com/article/10.1007/s12665-014-4012-0

https://www.mdpi.com/2072-4292/6/9/8639ag

https://www.ingentaconnect.com/content/schweiz/mz/2013/00000022/00000005/art00007

https://pdfs.semanticscholar.org/1b04/e802aad24061c0a5e7853e8ab81a41fdfe4.pdf

https://link.springer.com/article/10.1007/s11111-014-0211-6

https://link.springer.com/article/10.1007/s10596-012-9290-6

https://www.tandfonline.com/doi/abs/10.1080/00045600903362279

https://doi.org/10.1016/j.iswcr.2019.01.005

https://doi.org/10.3390/rs12030453

https://doi.org/10.1111/tgis.12580

https://doi.org/10.1016/j.envpol.2020.114257

https://doi.org/10.1016/j.jenvman.2020.110646

https://doi.org/10.3390/rs11060636

https://doi.org/10.1016/j.envpol.2019.02.081

https://doi.org/10.3390/rs11091016

https://doi.org/10.3390/su12062543

https://doi.org/10.1016/j.scitotenv.2019.02.269

https://doi.org/10.1016/j.jclepro.2019.118659

https://doi.org/10.1016/j.isprsjprs.2019.03.011

https://doi.org/10.3390/su12030865

https://doi.org/10.3390/w11020352

https://doi.org/10.3390/rs11070841

https://doi.org/10.1016/j.isprsjprs.2020.05.018

https://doi.org/10.3390/w12061553

https://doi.org/10.1177/0309133319852003

https://doi.org/10.1016/j.jher.2020.01.004

https://doi.org/10.1016/j.atmosenv.2019.117188

https://doi.org/10.1016/j.chemosphere.2020.126491

https://doi.org/10.3390/su11072030

https://doi.org/10.1080/13658816.2019.1633468

https://doi.org/10.3390/rs12111793

https://doi.org/10.3390/ijerph16071149

https://doi.org/10.3390/atmos10090517

https://doi.org/10.3390/atmos10050245

https://peerj.com/articles/7874/

https://doi.org/10.3390/ijerph16101717

https://doi.org/10.1002/joc.5879

https://doi.org/10.3390/ijerph16050727

https://doi.org/10.3390/ijerph16061058

https://doi.org/10.1002/met.1882

https://doi.org/10.5194/acp-20-3273-2020

https://doi.org/10.3390/rs11141704

https://doi.org/10.3390/su12062223

https://doi.org/10.3390/ijerph16224522

https://doi.org/10.1080/01904167.2020.1711944

https://doi.org/10.1029/2019EA000657

https://doi.org/10.1111/ecog.03591

https://doi.org/10.3390/atmos10080461

https://doi.org/10.1080/19475705.2019.1707719
https://doi.org/10.3390/su11071968

https://doi.org/10.3390/ijerph17196956

https://doi.org/10.3390/rs12203368

https://www.nature.com/articles/s41598-020-74561-4

https://doi.org/10.3390/app10217787

https://doi.org/10.1016/j.scitotenv.2020.141765

https://doi.org/10.1016/j.scitotenv.2020.143266

https://doi.org/10.1016/j.scitotenv.2020.141765

Qu, M., Chen, J., Huang, B. and Zhao, Y., 2021. Resampling with in situ field portable X-ray fluorescence spectrometry (FPXRF) to reduce the uncertainty in delineating the remediation area of soil heavy metals. *Environmental Pollution*, 271, p.116310.

https://link.springer.com/article/10.1007/s12665-020-09345-0

Qu, M., Chen, J., Huang, B. and Zhao, Y., 2021. Source apportionment of soil heavy metals using robust spatial receptor model with categorical land-use types and RGWR-corrected in-situ FPXRF data. *Environmental Pollution, 270*, p.116220.
https://doi.org/10.1016/j.envpol.2020.116220

https://doi.org/10.1016/j.scitotenv.2020.144057

DOI: https://doi.org/10.15244/pjoes/120774

https://doi.org/10.3390/w13020231

https://doi.org/10.1016/j.scitotenv.2020.143266

https://doi.org/10.3390/land10010020

https://www.nature.com/articles/s41598-020-79229-7

https://link.springer.com/article/10.1007/s11356-020-11051-0

https://doi.org/10.3390/ijgi10010031

https://doi.org/10.3390/ijerph18020608

https://www.cambridge.org/core/journals/quaternary-research/article/impact-of-methodological-decisions-on-climate-reconstructions-using-wapls/38FB41181F6B3F725ACB14FDA2DCC22A
https://doi.org/10.3390/ijerph18031056

https://doi.org/10.3390/ijerph18010304

https://doi.org/10.3390/rs13020234

https://doi.org/10.1016/j.scitotenv.2020.141765

https://doi.org/10.1016/j.scitotenv.2020.143266

https://doi.org/10.1080/09640568.2021.1879033

https://essd.copernicus.org/articles/13/907/2021/

https://doi.org/10.1155/2021/6694407

https://www.nature.com/articles/s41598-021-85992-y

https://doi.org/10.1080/01431161.2020.1851801

https://doi.org/10.1016/j.scitotenv.2020.144057

https://doi.org/10.1016/j.scitotenv.2020.143266

https://doi.org/10.1016/j.chemosphere.2020.129347

https://essd.copernicus.org/articles/13/529/2021/

https://doi.org/10.1016/j.ecolind.2021.107470

https://doi.org/10.3390/w13091174

https://doi.org/10.1016/j.scitotenv.2020.144057

https://doi.org/10.1029/2020GH000323

https://doi.org/10.1111/grow.12463

10.13287/j.1001-9332.202104.002

https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29ST.1943-541X.0003122?casa_token=5LLCWd68Tw8AAAAAA%3A2Cgp80uW_8DX-a1vO5Hn2wIKgVNYt-VSldhYW1f6AFEXr34H0TUyofUsv7XQcK260bo3EW68Fs&

https://doi.org/10.1016/j.ecolind.2021.107547

Wei, D., González-Sampériz, P., Gil-Romera, G., Harrison, S.P. and Prentice, I.C., 2021. Seasonal temperature and moisture changes in interior semi-arid Spain from the last interglacial to the Late Holocene. *Quaternary Research, pp.1-13.*

https://doi.org/10.3390/rs13061186

https://doi.org/10.5194/acp-2020-1152

https://doi.org/10.1016/j.scitotenv.2020.143266

Fire:

https://link.springer.com/article/10.1007/s11676-014-0460-3

http://www.publish.csiro.au/wf/wf15192

https://www.fs.usda.gov/treesearch/pubs/44520

http://www.publish.csiro.au/wf/wf13195

https://doi.org/10.1080/10106049.2020.1723718

https://doi.org/10.3390/s20175014

https://doi.org/10.3390/ijerph16060960

https://www.nature.com/articles/s41370-020-0210-x

https://doi.org/10.5194/acp-21-11243-2021

Fisheries:

Cullen, D.W. and Guida, V., 2021. Use of geographically weighted regression to investigate spatial non-stationary environmental effects on the distributions of black sea bass (Centropristis striata) and scup (Stenotomus chrysops) in the Mid-Atlantic Bight, USA. Fisheries Research, 234, p.105795. https://doi.org/10.1016/j.fishres.2020.105795

Cullen, D.W. and Guida, V., 2021. Use of geographically weighted regression to investigate spatial non-stationary environmental effects on the distributions of black sea bass (Centropristis striata) and scup (Stenotomus chrysops) in the Mid-Atlantic Bight, USA. Fisheries Research, 234, p.105795. https://doi.org/10.1016/j.fishres.2020.105795

Flood:

Forestry:

https://www.mdpi.com/1999-4907/9/10/582

http://www.sisef.it/iforest/abstract/?id=ifor2574-011

https://link.springer.com/chapter/10.1007/978-3-319-29589-3_3

https://www.mdpi.com/2071-1050/9/5/804/htm

https://link.springer.com/chapter/10.1007/978-3-319-35074-5_4

https://dialnet.unirioja.es/servlet/articulo?codigo=6240136

http://www.scielo.br/scielo.php?pid=S0044-59672016000200151&script=sci_arttext

https://ir.library.oregonstate.edu/concern/defaults/tt44pn323

https://link.springer.com/article/10.1007/s11676-014-0458-x

https://link.springer.com/chapter/10.1007/978-0-387-77942-3_6

https://academic.oup.com/forestry/article/81/2/209/565051

https://academic.oup.com/forestscience/article/50/2/225/4617554

139

Geology:

Coles, R.J., 2014. The cross-sectional characteristics of glacial valleys and their spatial variability (Doctoral dissertation, University of Sheffield). http://etheses.whiterose.ac.uk/5452/

Health:

https://doi.org/10.1109/Argo-Geoinformatics.2013.6621931

https://doi.org/10.1080/15230406.2014.965748

https://malariajournal.biomedcentral.com/articles/10.1186/s12936-017-2116-1

https://link.springer.com/article/10.1007/s10552-017-0897-8

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152940/

https://www.tandfonline.com/doi/abs/10.1080/13658816.2011.585612

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098170

http://ejournal.uin-malang.ac.id/index.php/Math/article/view/5879

https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-017-5017-x

http://article.sapub.org/10.5923.j.ajgis.20150403.03.html

https://dl.acm.org/citation.cfm?id=3017617

https://journals.sagepub.com/doi/abs/10.1177/1090198117742440

https://www.tandfonline.com/doi/abs/10.1080/09670874.2016.1256512

https://www.mdpi.com/2220-9964/7/9/351

https://link.springer.com/article/10.1007/s11356-018-2614-x

https://injuryprevention.bmj.com/content/21/4/260.short

Mayfield, H.J., Lowry, J.H., Watson, C.H., Kama, M., Niiles, E.J. and Lau, C.L., 2018. Use of geographically weighted logistic regression to quantify spatial variation in the environmental and

http://journal.ui.ac.id/index.php/health/article/viewArticle/5561

https://journals.plos.org/plosntds/article?rev=2&id=10.1371/journal.pntd.0005430

http://www.scielo.br/scielo.php?pid=S0037-86822016000100074&script=sci_arttext

https://peerj.com/articles/3070/

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146085

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172383

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690431/

https://link.springer.com/article/10.1007/s00038-014-0581-7

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610181/

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131578

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117128/

https://link.springer.com/chapter/10.1007/978-94-007-6735-5_19

Tsai, P.J. and Yeh, H.C., Scrub typhus islands in the Taiwan Area and the association between scrub typhus disease and forest land use and farm worker density: Geographically weighted regression. https://pdfs.semanticscholar.org/f89a/6f9f3837e88de6acc5c4d1196b6633f00ae9.pdf

Tsai, P.J., 2011. The analysis of geographically weighted regression pertaining to gastric cancer and Taiwanese ethnic communities. In *International conference on Environmental, Biomedical and Biotechnology.*
https://www.econstor.eu/handle/10419/124131

https://pdfs.semanticscholar.org/6bed/ecda57493afc6ec277a232f513bac8e053aa.pdf

https://link.springer.com/article/10.1007/BF03354885

https://www.journals.sagepub.com/doi/abs/10.1177/156482651303400410

https://www.tandfonline.com/doi/abs/10.1080/19475680903271133

https://www.tandfonline.com/doi/abs/10.1080/00330124.2011.639631?casa_token=bN5R1aQqP TAAAAAA:vpFGQRUqGiCrCVwputVVmvLIBnGmtA3JW8Tu2zO41TsVCU9f3aJkQxWwU_ gdNIXCvWmXwn7rZiXO

https://www.sciencedirect.com/science/article/pii/S0001706X16306738

https://www.mdpi.com/1660-4601/12/2/1425

https://journals.sagepub.com/doi/abs/10.1177/1088767909336728

https://www.sciencedirect.com/science/article/pii/S0049089X10001754

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038978

https://www.ajtmh.org/content/journals/10.4269/ajtmh.2010.09-0040

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135656
https://www.mdpi.com/1660-4601/10/12/7207/htm

https://www.mdpi.com/1660-4601/10/11/5844/htm

https://doi.org/10.1186/s12942-020-00204-6

https://doi.org/10.4081/gh.2019.701

https://doi.org/10.3390/ijerph16040579
https://doi.org/10.1186/s12889-020-08607-7

https://doi.org/10.1371/journal.pone.0233790

https://doi.org/10.1016/j.puhe.2019.01.009

https://doi.org/10.3390/ijerph17010252

https://doi.org/10.3390/ijerph16101833

https://doi.org/10.1080/09603123.2020.1821875

https://doi.org/10.1371/journal.pone.0238280

https://doi.org/10.4081/gh.2020.839

https://doi.org/10.1016/j.scitotenv.2020.138884

https://doi.org/10.1016/j.ajem.2018.08.060

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015565/

https://doi.org/10.1371/journal.pone.0220959

https://doi.org/10.1016/j.radonc.2019.09.009

https://doi.org/10.1016/j.sapharm.2019.06.011

https://doi.org/10.3390/ijerph17176396

https://doi.org/10.1177/0194599820913495

https://doi.org/10.3390/ijerph17176274

https://jech.bmj.com/content/73/2/148.abstract

https://bmjopen.bmj.com/content/9/2/e024042.abstract

https://doi.org/10.3390/su12104324

https://doi.org/10.1177/0193945919867938

https://doi.org/10.3390/pathogens9060423

Namgung, M., Gonzalez, B. and Park, S., 2019. The Role of Built Environment on Health of Older Adults in Korea: Obesity and Gender Differences. *International journal of environmental research and public health, 16*(18), p.3486. https://doi.org/10.3390/ijerph16183486

https://ajph.aphapublications.org/doi/abs/10.2105/AJPH.2019.305368

https://doi.org/10.1371/journal.pone.0210502

https://www.nature.com/articles/s41598-020-69788-0

https://doi.org/10.1177/0033354918824330

https://doi.org/10.3390/ijerph17051481

https://doi.org/10.1080/12265934.2018.1500493

https://doi.org/10.1002/gps.5277

https://doi.org/10.1017/S0950268818003035

https://bmjopen.bmj.com/content/10/8/e036729.abstract

https://doi.org/10.1289/EHP5304

https://doi.org/10.1111/cdoe.12603

https://doi.org/10.1590/1413-81232021263.42372020

https://doi.org/10.1029/2021GH000402

https://doi.org/10.1029/2020GH000358

https://doi.org/10.1016/j.scs.2021.103034

Li, Z., Qiao, S., Jiang, Y. and Li, X., 2021. Building a social media-based HIV risk behavior index to inform the prediction of HIV new diagnosis: a feasibility study.

https://doi.org/10.1097/QAD.0000000000002787

https://doi.org/10.1016/j.scitotenv.2021.145992

https://www.nature.com/articles/s41598-021-86987-5

https://doi.org/10.1080/03630242.2021.1942397

https://doi.org/10.1016/j.heliyon.2021.e06260

https://doi.org/10.1016/j.scs.2021.103159

https://doi.org/10.3390/ijgi10070448

https://doi.org/10.1016/j.jth.2021.101135

https://doi.org/10.1177/0956247820963962

https://doi.org/10.1080/09640568.2021.1879033

Land Use:

http://or.nsfc.gov.cn/bitstream/00001903-5/307897/1/1000014036870.pdf

http://iopscience.iop.org/article/10.1088/1755-1315/18/1/012170/meta

https://ascelibrary.org/doi/abs/10.1061/(ASCE)UP.1943-5444.0000274?casa_token=5OGMrYT_KzOAAAAA:ABAG5L6ZofOD7w3xfTdpYXM_0rvDmfp3aSxALIDScOPwiCd7UqR9ahpuhN55LoP2SSJG37KAang

https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnId=18325505&AN=94967608&h=krnoipO8Ze9Nh0cJljpKV6wWRQo7f0a0OJrantigk0I2e6zSD7t8DLycCtERIAAdme%2fKZu8VWxiKuBBq1ibg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crllhashurl=login.aspx%3d%26true%26profile%26dehost%26scope%26site%26authtype%3dcrawler%26jrnId%3d18325505%26AN%3d94967608

https://www.tandfonline.com/doi/abs/10.1080/01431161.2014.975377

Tang, Q., 2012. GIS-based urban land use characterization and population modeling with subpixel information measured from remote sensing data.
https://digitalcommons.lsu.edu/gradschool_dissertations/1282/

https://journals.sagepub.com/doi/pdf/10.3141/2245-14?casa_token=AmwR5nQi04kAAAAA%3AlvtaBSaymTFbaKdV1waInv9gkkqw6-BOjLpn65DkiXY3qiwFkLwMVCw6FR4hHYgRssG2d6ALN8Eu

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081188

https://www.tandfonline.com/doi/abs/10.1080/15481603.2015.1072400?casa_token=x7C5ABuBBbCAAAAAA:ZB6glx7Frc2ek76fuUFIuleshFMoGDoaYmovUPam1WIWF227TT78WvgyOY9WMYNhCYAcFTgE-

https://doi.org/10.1111/gcb.14611

https://doi.org/10.3390/su12114737

https://doi.org/10.3390/rs12091422

https://doi.org/10.1016/j.landusepol.2019.104269

https://doi.org/10.3390/su11216174

https://doi.org/10.3390/su12114449

https://doi.org/10.1016/j.compenvurbsys.2018.10.007

https://doi.org/10.1016/j.landusepol.2019.104249

https://doi.org/10.3390/rs11202359

Landslide:

Hong, H., Pradhan, B., Sameen, M.I., Chen, W. and Xu, C., 2017. Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector
https://www.tandfonline.com/doi/abs/10.1080/19475705.2017.1403974

Zhang, M., Cao, X., Peng, L. and Niu, R., 2016. Landslide susceptibility mapping based on
global and local logistic regression models in Three Gorges Reservoir area,

mapping by using spatial and global regression methods in the case of More and Romsdal
https://link.springer.com/article/10.1007/s10346-009-0188-x

regression, particle swarm optimization and support vector machine for landslide susceptibility
mapping: a case study at Wanzhou in the Three Gorges Area, China. International journal of
environmental research and public health, 13(5), p.487.
https://www.mdpi.com/1660-4601/13/5/487/htm

Sabokbar, H.F., Roodposhti, M.S. and Tazik, E., 2014. Landslide susceptibility mapping using

Huang, H., Yu, W., Yu, Q. and Zhang, G., 2013. Landslide surface deformation analysis based
on geographically weighted regression model. EJGE, 18, pp.2693-2704.
http://www.ejge.com/2013/Ppr2013.251alr.pdf

Feuillet, T., Coquin, J., Mercier, D., Cossart, E., Decaulne, A., Jónsson, H.P. and Sæmundsson,
Þ., 2014. Focusing on the spatial non-stationarity of landslide predisposing factors in northern
Iceland: Do paraglacial factors vary over space?. Progress in Physical Geography, 38(3),
https://journals.sagepub.com/doi/abs/10.1177/030913314528944?casa_token=eAJyCrPi4iAAA
AAA%3AYn8CvttNg6hE6Hve3qEZkg68ZsXbZ8Kkg_sRFFpy9pxM71MrnMiBgdzhicDea29d
Hk590QaFb91-

Li, Y., Liu, X., Han, Z. and Dou, J., 2020. Spatial Proximity-Based Geographically Weighted
Regression Model for Landslide Susceptibility Assessment: A Case Study of Qingchuan Area,
https://doi.org/10.3390/app10031107

2020. Paleotopography continues to drive surface to deep-layer interactions in a subtropical
https://doi.org/10.1016/j.jappgeo.2020.103987
https://doi.org/10.1371/journal.pone.0229818

Methodology:

https://books.google.co.uk/books?hl=en&lr=&id=cULId4Mp6AIC&oi=fnd&pg=PA227&ots=uvqzBvaSmH&sig=5w3EqcJAhvijgYGV3iGA649JWt#v=onepage&q&f=false

https://journals.sagepub.com/doi/abs/10.1068/a34133?casa_token=5VHsVs-H3AAAAAAA%3ACxbGKPLQY_VMIIVTjMMrAadQWpgOgZPx1_oihM_8u_25Epvm-wZZC3-FS1jr1t569sX5fOz4mlFl8

https://journals.sagepub.com/doi/abs/10.1068/a32117?casa_token=dILQ0Q82s0AAAAAAA%3AHQq-1TlwoRkMCFyQnj7vr2dDzdQP-1TOnv83Mx10gTIq2rB3xgo5DGem5m-P1leoYo_oFuNL68hg

https://journals.sagepub.com/doi/abs/10.1068/a38325

https://journals.sagepub.com/doi/abs/10.1068/a38218

https://link.springer.com/chapter/10.1007/978-3-642-03647-7_22

Yang, W., 2014. An extension of geographically weighted regression with flexible bandwidths (Doctoral dissertation, University of St Andrews). https://research-repository.st-andrews.ac.uk/handle/10023/7052

https://pdfs.semanticscholar.org/3881/91d891ed9a83a01781eac7b0f91aa0b747c0.pdf

Yilmazkuday, H. and Yazgan, M.E., 2009. Okun's Convergence within the US.

https://www.jstage.jst.go.jp/article/jappstat/38/3/38_3_111/_article/-char/ja/

https://ourarchive.otago.ac.nz/handle/10523/707

https://s3.amazonaws.com/academia.edu/documents/32450111/gisruk2013_submission_2.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y5UL3A&Expires=1544333473&Signature=1Eg11A6duNeVpr%2Fm0d7CWTYhhEmc%3D&response-content-disposition=inline%3B%20filename%3DTesting_geographically_weighted_multicol.pdf
https://journals.sagepub.com/doi/abs/10.1068/a43201

https://books.google.co.uk/books?hl=en&lr=&id=WfAmAQAAQBAJ&oi=fnd&pg=PA3&ots=bx_mDQCC6&sig=7NVN8ZC3QY9eVoKlfBZniyKPvLU#v=onepage&q&f=false

https://link.springer.com/chapter/10.1007/978-4-431-54000-7_6

http://www.koreascience.or.kr/article/JAKO201113663901163.page

https://link.springer.com/chapter/10.1007/978-94-007-3849-2_7

https://link.springer.com/chapter/10.1007/978-3-642-31994-5_10

Dong, G. and Harris, R., Modelling Spatial Heterogeneity: a Local Approach or a Global Approach?.

https://link.springer.com/article/10.1007/s10708-014-9551-0

https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-23430-9_92

https://www.ceeol.com/search/article-detail?id=133675

http://article.sapub.org/10.5923.j.statistics.20150501.01.html

https://www.tandfonline.com/doi/abs/10.1080/15230406.2013.831205?casa_token=HvU8i7Deo9gAAAAA:bNsDrMfNPnwcVym5k9WF0lQMTOZDDwdRKsHMAvyh0HH-FViXyHEdwRCDKfkU5XgdubgXyMvbwNMQ

https://pdfs.semanticscholar.org/b322/2638a7d6db7ee254b3a5050e749a6268e1dd.pdf

https://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1263731?casa_token=Sw4ikKGNKfoAAAAA:242ScIzddUK0cXLzEL758yg2SN8G5VLmgPbiEZX_BF0MR5fSdjLO5qenyDNMjMwU5bONrxFKcK0s

https://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1149181?casa_token=brwLitdraUAAAAA:DLlgeZrhuFSvyEvwVsg-BXxmnzvBOud-L6pSCmvpiNo0gl2FrFqa05w5IR9bMcBZ83sY3_C5UTB

https://www.tandfonline.com/doi/abs/10.1080/24694452.2016.1191990?casa_token=OuixEmjh5rAAAAA:JquMDp1MZJtd4uKFhk_NxjdOtUzWwfqOBkDev5_gzcQqfDUN00QtigP6f1qOH29jLrMCg1BjoLh

https://cloudfront.escholarship.org/dist/prd/content/qt04t0t6ds/qt04t0t6ds.pdf

http://orca.cf.ac.uk/91693/

Sodikin, I., Pramoedyo, H. and Astutik, S., GEOGRAPHICALLY WEIGHTED REGRESSION AND BAYESIAN GEOGRAPHICALLY WEIGHTED REGRESSION MODELLING WITH ADAPTIVE GAUSSIAN KERNEL WEIGHT FUNCTION ON THE POVERTY LEVEL IN WEST JAVA PROVINCE.

https://www.tandfonline.com/doi/abs/10.1080/13658816.2016.1224886?casa_token=CEU4CItZGx8AAAAA:pFaMkHaZzGR7khkf5KMT8zDePSKJJPYY1KdaUULyshI9Ya9MY8qdXPvbUu1VBu7KZxhYtgoQ9r

Leong, Y.Y. and Yue, J.C., of the paper: A Modification to Geographically Weighted Regression.

http://eprints.whiterose.ac.uk/131530/

https://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=01253395&AN=131769106&h=https%3A%2F%2FvoG9Qs4wxU5DxMazDBep6WjjSTHdLQw1jq9iClkdm%2bidsXqZWhzFhsdSKhd29xst47FFiqmZy8Xc%2bRw%3d%3d&rft=MidWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3d%3d&crl=c&resultNs=A

http://iopscience.iop.org/article/10.1088/1755-1315/169/1/012105/meta

https://journals.sagepub.com/doi/abs/10.1068/a3162?casa_token=HG2Qe-SPFEEAAAAAA%3A5OkfKYnPLYyiLHAXNARCuB6xnWfNChpEnysl5gYSoXTyyzemwViIlijT5ggqm1UZBXsrxDdY8Va-l

https://journals.sagepub.com/doi/abs/10.1068/a34110?casa_token=uDIGWkPgwOcAAAAA%3AY8pw6mcFUq4Ozeam1rH0M9ye7cj15Oa4VIIu-UlIF08ZIcEW2_iOyYwrj9rXZaZ2rmlbgiBnVSTG4

Yu, D., Peterson, N.A. and Reid, R.J., 2009. Exploring the impact of non-normality on spatial non-stationarity in geographically weighted regression analyses: Tobacco outlet density in New Jersey. *GIScience & Remote Sensing, 46*(3), pp.329-346. https://www.tandfonline.com/doi/abs/10.2747/1548-1603.46.3.329?casa_token=N75MFhQkQMkAAAAA:F4neW27fnjFiekwJ8gMC-86R9xjZweQ8iteIBm5cR6jkgzb6D9D-RYfB_YDvSCCddJ70w40hnb7q

Chambers, R., Pratesi, M., Salvati, N. and Tzavidis, N., 2007. M-quantile Geographically Weighted Models with Application to Small Area Estimation. In *Small Area Estimation 2007*. https://arpi.unipi.it/handle/11568/115868#.XDKYgFxKi00

Bidanset, P.E. and Lombard, J.R., 2017. Optimal kernel and bandwidth specifications for geographically weighted regression. *Applied Spatial Modelling and Planning*. https://books.google.co.uk/books?hl=en&lr=&id=cDoILwAAQBAJ&oi=fnd&pg=PA107&ots=0-1GLqdnCe&sig=rm439twk7ljNc1KH3YkMo8y2vX0#v=onepage&q&f=false

https://www.tandfonline.com/doi/abs/10.1080/13658816.2012.698014

https://www.tandfonline.com/doi/abs/10.1080/13658816.2019.1572895

https://doi.org/10.1016/j.neucom.2020.02.058

https://doi.org/10.1080/24694452.2020.1774350

https://doi.org/10.1111/gean.12229

https://doi.org/10.1016/j.geoderma.2019.01.025

https://doi.org/10.3390/rs11030213

https://doi.org/10.3390/ijgi8040174

https://doi.org/10.1080/03610926.2019.1615507

https://doi.org/10.1177/0160017620959823

https://doi.org/10.1016/j.spasta.2020.100444

https://doi.org/10.1111/biom.13077

https://doi.org/10.1080/13658816.2019.1675072

Politics:

http://eprints.maynoothuniversity.ie/5875/

https://link.springer.com/chapter/10.1007%2F978-3-642-13312-1_45

https://www.tandfonline.com/doi/abs/10.1080/10361146.2013.786674?casa_token=NGP7FUFGeLAAAAA:XJXFht8XjoxXSmrUbs-A82xHrr1i-5BAhWy0XQic08ZgPodZ37GY1wCVasxGLejrP1Mkbvzk8d

https://link.springer.com/chapter/10.1007/978-3-642-03326-1_13

https://link.springer.com/article/10.1007%2Fs10708-012-9451-0

Real Estate:

https://link.springer.com/chapter/10.1007/978-3-319-92099-3_17

https://link.springer.com/article/10.1007/s10901-012-9319-0

https://www.infona.pl/resource/bwmeta1.element.baztech-article-AGH8-0010-0082

https://s3.amazonaws.com/academia.edu/documents/33133803/2012_Ibrahim_GIS_Based_Mass_Appraisal_Model_for_Equity_and_Uniformity_of_Rating_Assessment.pdf?AWSAccessKeyId=AKIAIWOYYGZ2Y53UL3A&Expires=1549145505&Signature=sf0MgBLAYp83ip4pOlazso07zzY%3D&response-content-disposition=inline%3B%20filename%3DGIS-Based_Mass_Appraisal_Model_for_Equit.pdf

https://www.tandfonline.com/doi/abs/10.1080/00330124.2014.987198

Chan, W.M., 2014. COMPARISON OF SPATIAL HEDONIC HOUSE PRICE MODELS: APPLICATION TO REAL ESTATE TRANSACTIONS IN VANCOUVER WEST. http://summit.sfu.ca/item/14416

https://www.mdpi.com/2071-1050/9/10/1826

https://www.tandfonline.com/doi/abs/10.1080/13658816.2018.1545158

https://journals.sagepub.com/doi/abs/10.1177/0042098011429486

https://link.springer.com/article/10.1007/s12076-012-0084-1

https://www.jstor.org/stable/40987332?casa_token=kATqL7clOw8AAAAA:3OoTYRw_gvcpGSMFh_vHi6ZB1qbP4yrGhr5ydXKRefMrQ-lyHTmflc2315S0KEIC9VaF3c-HdwbJohw6-osFJnMV2OaimSrV8Sya6mhec_3phs20&seq=1#metadata_info_tab_contents

https://www.tandfonline.com/doi/abs/10.1080/13658810802672469?casa_token=aUmD0wqdxwAAAAA:UKWebjbOWhakiRHqHWiSAHP1XLxWF_NzvgKdpncZvBdR5U4--FZB64iEaaE8zvq03RzldCD_cEjw

https://www.mdpi.com/2071-1050/9/9/1635

https://ascelibrary.org/doi/abs/10.1061/(ASCE)UP.1943-5444.0000386?casa_token=mda3Fadrg7cAAAAA:yK1AyYcTcPTNY2KQkQLU0sXHVe3BAmZVtqFI53pdgwRCMIOHXd4n_pulkycnOg-TzhT-2MBbHA

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10444/104440F/Implementing-GIS-in-real-estate-price-prediction-and-mass-valuation/10.1117/12.2280255.full?casa_token=QYl3DP7WOjsAAAAA%3atoHQetM3_loLt7wAU_gGZOBwbuh2kA0nwjF5dz_J OUchXpRSzbhPDrK5G8xmP6ii EjE Ww

https://www.tandfonline.com/doi/abs/10.3846/1648715X.2016.1247021

https://www.mdpi.com/2220-9964/5/1/4/htm

https://www.mdpi.com/1099-4300/18/8/303/htm

https://www.tandfonline.com/doi/abs/10.1080/00330124.2015.1033671

https://ci.nii.ac.jp/naid/120005666679/

https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler &jrnlnumber=18325505&AN=100053305&h=A1xVtQYQyuB9N7cfdz4Tc8Hz9BSVBu5TrDVqCQj6RbUB5SRdu3wDP83rBmuQ%2bUDXVVVd%2bMhzTcKyL1hm7edA%3d%3d&crl=c&result Ns=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26 profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnlnumber%3d18325505%26AN%3d100053305

http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JOSHBW_2015_v23n5_65

http://discovery.ucl.ac.uk/1498769/

https://digitalcommons.odu.edu/publicservice_pubs/27/

https://www.jstor.org/stable/26326913?casa_token=OAHaFCM48DUAANAAAA:-ljue4xp3ZnC9aZA3AfTPUdwa8PmlI6vVWYj1-DzdXPCZUtm1MySwRa4j8e8z8L3_0tKvhuni-BMbxsSwmKN_7cRCOfHzIXZO4Ag8TcY92X5xxGml4&seq=1#metadata_info_tab_contents

http://fupress.net/index.php/ceset/article/view/13160

http://www.koreascience.or.kr/article/JAKO201212656357889.page

https://digital-library.theiet.org/content/conferences/10.1049/cp.2011.0288

https://www.researchgate.net/publication/266795320_U sing_geographically_weighted_regressi on_for_housing_market_segmentation

https://www.tandfonline.com/doi/abs/10.1080/13658816.2013.878463

http://eprints.maynoothuniversity.ie/5816/

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164553

https://journals.sagepub.com/doi/abs/10.1068/b38093?casa_token=8wvFz-Mh45UAAAAA%3AQmx_XAPsKy2eeXst-UKgi495-1KW44fekGckPtZS4V4nbXP2q8E1-ThBz9Qc1hECbHQiMI20edU5

https://www.jstor.org/stable/26201690?seq=1#metadata_info_tab_contents

http://www.aresjournals.org/doi/abs/10.5555/rees.32.3.d4713v80614728x1

https://www.jstor.org/stable/26201653#metadata_info_tab_contents

https://journals.sagepub.com/doi/abs/10.1068/b32119

https://journals.sagepub.com/doi/abs/10.1177/0042098013492234?casa_token=2gnet15ECyYAAAAA%3Ahaw7cM3DNfbUyopcxj7kYA2p_9xawCWJp6sTfYhS7kJasMR4qswx-iRgn5y_brs2pDdeoqioKQvt4

https://www.tandfonline.com/doi/abs/10.2747/1548-1603.44.3.267?casa_token=5tZZfsv7p6YAAAAAA:7lmciqueF98VvscLRcMyCsKQ_rTVtL6dXbD8Kh9M5Wlv5ueO6amo_GfdId8de46cTcRdbHu_4sQ

https://www.tandfonline.com/doi/abs/10.1080/13658816.2013.865739?casa_token=nKsLC9hFv94AAAAA:d3oODIUOz7AmNs0K2Mhre-XCnUrUVsv0KQD14T9ysPZBPjMzaAeDU7e6MbNT0PGOnenjXgN3m1n

https://doi.org/10.3390/land9050143

https://doi.org/10.3390/ijgi8100431

https://doi.org/10.3390/land9010007

https://doi.org/10.1016/j.apgeog.2019.102124

https://doi.org/10.1080/08920753.2020.1732799

https://doi.org/10.1111/gean.12259

https://doi.org/10.3390/su12010259

https://doi.org/10.3390/su12114710

https://doi.org/10.3390/su12031281

Regional Analysis:

Butt, S., Lahtinen, K. and Brunsdon, C., 2016. Using geographically weighted regression to explore spatial variation in survey data.

geographically weighted regression: A regional analysis of wealth and the land cover in

https://www.tandfonline.com/doi/abs/10.1080/17421770701251905

components analysis: a case study of Northern Ireland in 2001. *Computers, Environment and

Hogrebe, M.C. and Tate, W.F., 2012. Place, poverty, and algebra: A statewide comparative
spatial analysis of variable relationships. *Journal of Mathematics Education at Teachers
College*, 3(2).
https://doi.org/10.7916/jmetc.v3i2.746

critical appraisal of β-convergence.
http://s-space.snu.ac.kr/handle/10371/4827

Yu, D., 2014. Understanding regional development mechanisms in Greater Beijing Area, China,

regression.

the impact path of urbanization to carbon emissions in the China Yangtze River delta urban
https://doi.org/10.3390/app9061116

perceptions on Madrid Metro system: Using Twitter data to link complaints to space. *Sustainable
Cities and Society*, 64, p.102530.

Wang, Y., Chen, X., Sun, P., Liu, H. and He, J., 2021. Spatial-temporal Evolution of the Urban-
https://doi.org/10.1007/s11769-021-1202-z
Software:

Terrorism:

Transportation:

https://trrjournalonline.trb.org/doi/abs/10.3141/2671-05

https://journals.sagepub.com/doi/abs/10.1177/0739456X17696035

Yao, S., Loo, B.P. and Lam, W.W., 2015. Measures of activity-based pedestrian exposure to the risk of vehicle-pedestrian collisions: space-time path vs. potential path tree methods. Accident Analysis & Prevention, 75, pp.320-332.

https://trid.trb.org/view/1118238

https://www.mdpi.com/2413-8851/2/1/14

https://www.tandfonline.com/doi/abs/10.1080/15568318.2017.1422301

https://www.mdpi.com/2071-1050/10/12/4684

https://www.mdpi.com/2076-3263/6/1/16

https://www.tandfonline.com/doi/abs/10.1080/00036846.2017.1302064

Gong, S., Cartlidge, J., Yue, Y., Qiu, G., Li, Q. and Xin, J., 2017, November. Geographical huff model calibration using taxi trajectory data. In *Proceedings of the 10th ACM SIGSPATIAL Workshop on Computational Transportation Science* (pp. 30-35). ACM.
https://dl.acm.org/citation.cfm?id=3151553

https://www.igi-global.com/article/modeling-the-spatial-variation-in-us-airfares-utilizing-geographically-weighted-regression/119617

Anciaes, P.R., 2014, June. Using locally weighted regressions to model social inequalities in exposure to urban road traffic noise. European Urban Research Association (EURA) and the Urban Affairs Association (UAA).
http://discovery.ucl.ac.uk/1434196/1/Anciaes_using_locally_weighted_regressions_to_model.pdf

https://scholarworks.montana.edu/xmlui/handle/1/8773

https://www.researchgate.net/profile/Jordy_Hendrikx/publication/259466143_Surface_hoar_distribution_at_the_scale_of_a_helicopter_skiing_operation/links/0deec52caf1597374d000000.pdf

http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=GRJBBB_2013_v16n1_67

https://uhdspace.uhasselt.be/dspace/handle/1942/14565

file:///C:/Users/wluo23/Downloads/fulltext_stamped.pdf

https://www.tandfonline.com/doi/abs/10.1080/01615440.2013.803414

https://www.sciencedirect.com/science/article/pii/S0967070X16302402

http://lctr.eng.fiu.edu/reports.htm

https://journals.sagepub.com/doi/pdf/10.1177/0361198106197200113?casa_token=5TrYP4Ogw1QAAAAA%3AnaBZuNDfVSBG5zyt3aJeO0lPG0uHJh2f4mv6vHVPo0N_X414T5aVQ_WACgyvLLjAVoCpJlv_rG7qc

https://journals.sagepub.com/doi/abs/10.1068/a438336?casa_token=x4olOdt_5AYAAAAA%3AhZvTiLLxrtWEndExkA1bpZ7ercbewMBlb8yGzpTjm294itjvyn1zhP8JQDkbeikP37PFzpUb55RTdk

https://journals.sagepub.com/doi/abs/10.3141/2276-18?casa_token=udUaBVWBFYAAAAA%3AjxbgTt2MQWkk-MIJkmMkFvpNNQ8XEhoustCqpMwjkkNiwig_vIECb0g201ZJ6boGSvqlAdTVUF1gc

https://doi.org/10.1016/j.cities.2018.12.033

https://doi.org/10.1139/cjce-2018-0727

heterogeneity and time of day effects. *Transportation research part F: traffic psychology and behaviour, 66*, pp.379-392.
https://doi.org/10.1016/j.trf.2019.09.003

https://doi.org/10.1155/2019/8521649

https://doi.org/10.1016/j.tra.2020.06.022

https://doi.org/10.3390/su12062255

https://doi.org/10.1016/j.jtrangeo.2019.04.004

https://doi.org/10.1080/15568318.2020.1789248

https://doi.org/10.3390/ijgi9080475

https://doi.org/10.1016/j.tra.2019.05.017

https://doi.org/10.1111/pirs.12523

https://doi.org/10.1080/01944363.2019.1692690

https://doi.org/10.1177/0361198120931100

https://doi.org/10.1080/01080/01441647.2020.1747570

https://doi.org/10.1080/12265934.2020.1816206

https://doi.org/10.3390/su11102733

https://doi.org/10.1080/23249935.2018.1523250

https://doi.org/10.3390/su12052143

https://doi.org/10.1080/17421772.2020.1749336

https://peerj.com/articles/cs-224/?utm_source=TrendMD&utm_campaign=PeerJ_TrendMD_1&utm_medium=TrendMD

Urban Studies:

Jiang, Y., Li, Z. and Ye, X., 2018. Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level. *Cartography and Geographic Information Science*, pp.1-15. https://www.tandfonline.com/doi/abs/10.1080/15230406.2018.1434834?casa_token=SfjVzGBVor4AAAAA:VAUfHAbiE8cqPrUOz6-DsSj1aKg45VfGolBClj_0O4nAZ0P8fEVQ5CoxQf46YMRHsTB_EgEmXhJ

Molenaar, D., 2018. Determinants of Household Water Use in the City of Kalamazoo, Michigan: The Role of Climate and Socioeconomic Factors. https://scholarworks.wmich.edu/masters_theses/3409/

https://hal.archives-ouvertes.fr/hal-01708747/

http://www.airitilibrary.com/Publication/alDetailedMesh?docid=hhqkx-e201602008

https://www.tandfonline.com/doi/abs/10.1080/19475683.2016.1158735

https://www.mdpi.com/1424-8220/17/3/528

https://socialscienceresearch.org/index.php/GJHSS/article/view/1746

https://www.mdpi.com/1660-4601/14/6/643/htm

https://journals.sagepub.com/doi/abs/10.1177/2399808317716935?casa_token=2jfkVDpXpOIAAAAA%3AqVsEm_FA82JCmWJx8Xmr1c1JMFyDY81TrKkhyt6LW4_NTlHIiNK-5aTgh35DDUBFuehHtL5IGtKo3Y

https://journals.ametsoc.org/doi/abs/10.1175/WCAS-D-15-0026.1

https://www.mdpi.com/2071-1050/9/12/2222

https://www.igi-global.com/article/geostatistical-analysis-for-the-study-of-relationships-between-the-emotional-responses-of-urban-walkers-to-urban-spaces/144770

https://academic.oup.com/jue/article/2/1/juw006/2875730

https://link.springer.com/chapter/10.1007/978-3-319-19342-7_7

Pravitasari, A.E., Saizen, I., Tsutsumida, N., Rustiadi, E. and Pribadi, D.O., 2015. Local spatially dependent driving forces of urban expansion in an emerging asian megacity: the case of greater Jakarta (Jabodetabek). https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/210474

283

https://doi.org/10.1016/j.habitatint.2019.03.011

https://doi.org/10.3390/ijerph16132318

https://doi.org/10.1080/19439962.2020.1712671

https://doi.org/10.1016/j.scs.2019.101863

https://doi.org/10.1016/j.jclepro.2019.05.389

https://doi.org/10.1016/j.landurbplan.2020.103806

https://doi.org/10.1111/sjtg.12328

https://doi.org/10.1016/j.jag.2020.102131

https://doi.org/10.3390/app9235224

Vegetation:

https://journals.sagepub.com/doi/abs/10.1068/b36044

https://www.tandfonline.com/doi/abs/10.1080/17550874.2013.843604