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Scale is a central concept in geography and the spatial sciences. Though it serves as an 
essential thread in the intricate tapestry of the physical and social sciences, the number and 
nature of the available definitions and deployments is as varied as the diverse disciplines that 
co-opt the concept. Nevertheless, a few consistent definitions have emerged. These are first 
highlighted in order to draw attention to an under studied type of spatial scale -- that of process 
scale. The focus is then shifted towards differentiating process scale from other types of scale in 
order to highlight trends and suggest a research agenda to develop metrics of  process scale. 

There is by now a large volume of literature describing the concept(s) of spatial scale and 
detailing its development across various disciplines. On the one hand, domain specific scale 
terminologies have arisen in conjunction with substantive research in areas such as landscape 
ecology (e.g., Turner, 1989), remote-sensing (e.g., Wu & Li, 2009), and segregation (e.g., 
Johnston et al., 2019). This has perhaps led to the idea that scale is an ambiguous concept and is 
dependent upon application context (Goodchild, 2001; Turner, 1989; Dabiri & Blaschke, 2019). 
However, on the other hand, there now exists several general treatments of the topic that attempt 
to bridge subjects and forge a common understanding (Harvey, 1968; Lam & Quattrochi, 1992; 
Marceau, 1999; Atkinson & Tate, 2000; Dabiri & Blaschke, 2019). An outcome of these efforts 
is a few definitions of spatial scale that are frequently encountered across the spatial sciences.  

Dabiri and Blaschke (2019) provide a high level synthesis of some previous 
conceptualizations of spatial scale that result in three consistent definitions (amongst others) that 
are often described in the literature. First, geographic scale refers to the extent of an area of 
interest. Second, measurement or observation scale refers to the resolution of spatial units across 
an area of interest. Finally, the third definition refers to operational or process scale and is the 
dimension over which particular processes occur. It is this latter definition of scale that is of 
primary interest here that will be further differentiated and defined. 

A more general definition of scale is provided by ​Marceau who states that, “​scale refers 
to the spatial dimensions at which entities, patterns, and processes can be observed and 
characterized” (​1999). Following this definition, ​another way to think about the three above 
mentioned conceptualizations of spatial scale is in terms of the way in which they modulate 
spatial entities, patterns, and processes. Commonly, in the spatial sciences the focus is on 
collecting and analyzing georeferenced data in order to measure patterns and ultimately learn 
about spatial processes. In this context, geographic scale and measurement scale are the 
dimensions that modulate spatial patterns. Geographic scale can be thought of as the macro 
attribute governing spatial patterns whereas measurement scale can be thought of as the micro 
attribute governing spatial patterns (Goodchild, 2001). The former controls the amount of area 
over which a pattern can vary where the latter controls the number and nature of potential spatial 
units over which a pattern can vary. In contrast, operational or process scale is the dimension that 
modulates the relationships that generate the data and patterns we observe. 

Spatial patterns and processes are inherently linked since a single process can generate a 
variety of patterns and the same pattern can be generated by different processes. In addition, 



geographic scale and measurement scale intrinsically limit our ability to quantify spatial 
processes. That is, “scales of variation observable in spatial data are inextricably linked to the 
scales of measurement through which they were obtained” (Atkinson & Tate, 2000), which 
similarly limits our ability to infer spatially variable processes. However, a major difference 
between pattern and process is that patterns are typically concerned with a single variable (i.e., 
univariate) while process implies relationships and associations between two or more variables 
(i.e., multivariate). At the same time, it has long been recognized that different processes occur at 
different scales and that a single scale may not be sufficient to characterize complex multivariate 
processes (Harvey, 1968; ​Marceau, 1999​). Despite this, a collective shift in focus towards 
multiscale patterns and processes is a relatively recent trend. It is also possible to differentiate 
between multiscale patterns, which can be captured by employing multiple geographic and/or 
measurement scales, and multiscale processes, which are typically captured via local multivariate 
statistical models. 

Whereas scale is typically treated in the broader literature as a problem or issue to be 
dealt, local modeling treats scale as a feature that can be exploited. For example, there are many 
investigations of how to best fuse or change the scale of datasets, define an optimal scale 
associated with a pattern, or understand the effect of different measurement scales on analytical 
results (i.e., MAUP), which can each imply information about process scale. In contrast, local 
multivariate statistical models take a fixed geographical scale and observational scale in order to 
make explicit inferences about process scale and heterogeneity. In the local modeling paradigm, 
process is hypothesized to potentially vary across space in the same way that data observations 
may vary across space to form patterns. As a result, spatially varying processes may be 
characterized by a scale parameter that governs how constituent components interact, as well as 
patterns that describe the variation within the process. Two examples include geographically 
weighted regression (GWR) (Fotheringham et al., 2002) and Bayesian spatially varying 
coefficient models (Gelfand et al., 2003). Multiscale variants of local multivariate statistical 
models have recently been developed that produce relationship-specific estimates of scale 
parameters, allowing processes to spatially vary independent of each other (Fotheringham et al., 
2017; Murakami et al.,, 2017; Wolf et al., 2018; Oshan et al., 2019b). As a result, multiscale 
local multivariate statistical models act as a prism for decomposing spatial variation amongst 
spatial data across a set of spatial processes. 

Several research directions can therefore be suggested in order to develop these 
relationship-specific scale parameter estimates as more formal process indicator-of-scale metrics 
(PRISMs). First, it is important to determine the connection between the spatial variability of 
processes (i.e., coefficient estimate surfaces) and scale parameter estimates (i.e., GWR 
bandwidth). A related second suggestion is to investigate scale uncertainty and how to interpret it 
(e.g., Oshan et al., 2019a; Li et al, 2019; Oshan et al., 2019c). These two tasks would help 
establish a better understanding of how to categorize spatial process as global, regional, or local. 
Third, more work is needed to ground metrics of scale in terms of the meaning of extreme values 
(i.e., minimum and maximum). Finally, it is necessary to  develop diagnostics and identify 
potential limitations (e.g., Yu et al., 2019a; Yu et al., 2019b) when quantifying process scale 
using a statistical framework; the usual suspects, such as omitted variable bias, functional form 
misspecification, and multicollinearity, may affect the quantification of process scale and 
heterogeneity. Such endeavors would provide the foundation for PRISMs, enhancing the 
geography of relationships and contributing greatly towards a science of spatial scale. 
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